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Summary: By means of graph theory, we analyze the changes in topology of a granular
assembly during deformation. The elementary mechanism of diffuse deformation
consists of intermittent flips. We show that dilatancy is the direct result of: an increasing
number of flips, and, elastic relaxation of particles upon flips. Both are dependent on
particles’ elastic potential energy prior to flip and after the flip. The latter is the result
of nonuniform distribution of interparticle forces in force chains. Next, we consider
shear bands in granular materials. Formation of shear bands is accompanied by
accompanied by massive rolling of particle. Since rolling is constrained by neighbors, a
characteristic rolling correlation length appears. The transmission of rotations in a
particular direction depends on the strength of the force chain branches in the direction
of propagation and across. The maximum propagation distance is comparable to
observed widths of shear bands. Finally, we turn to the question of vortex formation
within shear bands and argue that vortex pattern minimizes the dissipation/resistance in
granular fluid.
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1. INTRODUCTION

Dilatancy in granular materials has been known since XIX century [1]. Despite of
wealth of experimental observations [2-4] and phenomenological macroscopic models,
the current understanding of dilatancy is purely empirical. The original Reynolds’
rational for dilatancy, that nearly rigid particles must climb over each other to
accommodate shear [5], only brings about other questions. Why materials particulate on
the atomic level, such as crystals and simple fluids, don’t dilate, as the rigid sphere
model of densely packed atoms would predict? Moreover, the boundary between
dilation and compaction behaviour, the critical state, depends on both porosity and
pressure. Yet, the only existing rational for dilatancy, excludes pressure dependence.

Depending on the state of a particle assembly and boundary conditions, deformation may
localize into a persistent shear band. Numerous experimental observations of shear
bands of width 10-20 particle diameters [6-10] indicate that this width may be a
universal length scale. The formation of a shear band is accompanied by massive rolling
of particles within the band [11, 12]. Sliding engages frictional dissipation and thus
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requires more work for the same displacement than rolling, so that the latter is always
the energetically preferred form of transverse relative motion. However, in a densely
packed assembly, pure rolling motion is impossible, owing to the constraint posed by
neighboring particles, as illustrated in Figure 1. Since perfect rolling is impossible,
sliding dissipates the energy so that only a part of the angular velocity of a rotating
particle is transmitted to its neighbors. Therefore, the information about rotation of a
particle diminishes with distance from the particle through successive interparticle
contacts. This implies the existence of a length scale, the rotation transmission distance,
associated with the deformation process, which represents the distance from a particle
beyond which the information about particle’s rotation is not transmitted. For spherical
particles, this length will depend on friction, pressure, particle size distribution, and the
state of the assembly (e.g., the level of compaction). For non-spherical particles,
additional parameters, such as the aspect ratio, will play a role.

Figure 1. Necessity of sliding in a cluster of particles. The
centers of three particles A, B and C are fixed and the
particles are in contact with each other. Impose the
counterclockwise rotation on particle A, as shown.

A Relative sliding is defined by non-zero relative velocities of
the contact points. To avoid sliding with respect to A, both
B and C must both rotate in the clockwise direction. But
this will result in sliding on the B-C contact.

The rotation transmission is the result of frictional constraint and must depend on normal
forces which are locally directionally dependent, following the pattern of force chains
[13-17]. Within shear bands the flow pattern is not laminar, but develops vortices [18].
Such flow pattern is undoubtedly related to the charctristic lengths. In this work we
provide a tentaive explanation of why such pattern develops. The localization
mechanism based on buckling of force chains [19-23], although based on some
phenomenological elements (such as confining forces and contact moments), does
predict a characteristic buckling length. Particle level kinematics has, until recently,
received less attention than force chains statics [24-29].

2. INTERMITTENT FLIPS AND DILATANCY

The mathematical description, endowed with information about connectivity of particles,
is given by the Delaunay graph of the assembly for spheres [30], or its generalization for
an assembly of convex particles, the space cells [31]. Delaunay or space cell graph
provides a direct transition from discrete kinematics to the equivalent continuum. It
allows unambiguous definition of strain, rotation, and their rates, at the level of
individual cell. It also provides a mathematical distinction between two types of
deformation of dense granular material. The isotopologic deformation is characterized
by the deformed space cell graph which is topologically equivalent to the reference one,
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i.e., each particle must have the same nearest neighbors in reference and deformed
configuration. The strains produced by such mechanism are of the order 107 [29], much
smaller than the strains of interest here (102 —10""). The heterotopologic deformation
includes topological changes in the space cell graph. Since these are stochastic, the
probability of any such change reversing itself upon unloading is vanishingly small.
The changes in topology of the space cell graph, characterizing the range of plastic
deformation of interest, can only occur by a few generic mechanisms — flips [32]. Only
one generic flip exists in 2D — the 2-2 flip, as illustrated in Figure 2. In 3D, with
tetrahedra as cells, there are two such mechanisms — the 2-3 and 3-2 flips. (The numbers
indicate the numbers of original and final cells in the generic flip.)
We performed a series of simulations on assemblies of cohesionless elastic particles with
friction. Computational details are given in [33], while the details of the analysis are
given in [34]. The results demonstrate that the inelastic deformation of dense granular
matter occurs by intermittent flips. At each deformation increment, only a small fraction
of cells is undergoing a flip, and a completely different set of cells is flipping in the next
increment. Such diffuse deformation mechanism governs the deformation regime where
the dilatancy persists and the critical state is reached.
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Figure 2. The generic 2-2 flip in 2D, after [32]. Left to right. As the cluster is
compressed laterally, the nearest neighbors change. In the Delaunay graph, one
diagonal is replaced by the other. The total volume (area in 2D) first increases by
Agt | then decreases by As™ . Note that, in a large assembly of particles, a flip in
opposite direction is equally probable.

We find that about % of the total volume change correspond to the increasing flipping
fraction, while the remaining % is the result of elastic relaxation of particles forming the
flipping cells. This release of elastic energy is possible only because of the specific
nonuniform organization of contact forces in force chains of different strength, which
enables particles to flip from a strong force chain to a weaker one. Moreover, the
nonuniform distribution of elastic energy is the underlying driving force for the
increasing fraction of flipping cells. The role of elastic potential in inelastic deformation
has been proposed on a phenomenological level [35, 36], but the results in [34]
summarized here demonstrate its existence and give it a clear micromechanical meaning.
The elastic potential energy of a particle prior to a flip depends on its history,
particularly on maximum past pressure. After the flip, the particle has relaxed and its
elastic energy corresponds to the current pressure. The flipping potential of a particle is
the difference between the two elastic energies. Thus, the rate of dilation will depend on
the current pressure.
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3. ROTATION LENGTH SCALE

To analyze the transmission of particle rotations through the contact network of an
assembly, we perform numerical experiments on a 2D assembly of particles using the
discrete element method [33]. A roughly circular assembly of particles (Figure 3) is
subjected to confining pressure. Then, a disk on a strong force chain is forced to rotate
with a prescribed angular velocity. Details are given in [37].

The non-dimensional parameters considered include: the friction coefficient 4z, the

quasistatic coefficient [33], the non-dimensional standard deviation of the particle size
distribution /R, the non-dimensional pressure coefficient &;, and the solid volume
fraction. For a specified initial compaction procedure and a sufficiently small quasistatic
coefficient, the rotation transmission length depnds on three parameters: G/ R, &y and u.

We have covered this parameter space in [37]. Typical results are shown in Figure 4,
where the magnitudes of angular velocities of particles, normalized with the prescribed

angular velocity of the forced particle @), , are plotted as functions of the distance from

the forced particle for a given particle size distributions, pressure and the coefficient of
friction.

Figure 3. Force nework of a pressurized assembly of particles.

The angular velocities diminish with distance from the forced particle. The distance
from the forced particle at which the angular velocities decay to the level of noise
associated with the simulation is the rotation transmission distance. This length scale is
the fundamental length scale exhibited by granular materials and should correlate with
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the shear band widths observed in experiments. The rotation transmission distance
increases with increasing width of the particle size distribution. This corresponds well
qualitatively with observations in numerical experiments [38], where the shear band
width is lowest for the nearly monodisperse assembly. As the size distribution of
particles narrows and approaches the monodisperse assembly, the kinematic constraints
for particle rearrangement become more severe, yielding a shorter rotation transmission
distance and thus — a narrower shear band.
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Figure 4. Evolution of angular velocity with distance for particle assemblies with
£n=6.647x10" . u=0.5and o/R=0.1925.

The propagation of rotation depnds on the direction. The primary direction of
transmission of rotations is along strong force chains. In [37], we have proposed a
quantitative description, analogous to the fabric tensor and analyzed the spatial
distribution of rotations in some detail. When the forced particle is crossed only by
weak force chains, rotations propagate radially only up to the first transverse strong force
chain. Such a force chain prevents propagation of rotations in the radial direction. Thus,
strong force chains have a dual role in propagation of rotations: they improve the
rotation propagation along the chain and impede the propagation across the chain.

4. VORTICES IN SHEAR BANDS

Granular material at critical state behaves like a viscous fluid. It flows at a constant
stress. The flow is localized in a shear band and the observed nearly constant width of
the shear band (in units of particle size) indicates the internal length scale. The flow
inside the shear band exhibits a pattern of vortices, not expected for a Newtonian fluid at
such low Reynolds numbers. The critical questions are: (1) Why do vortices form? (2)
What kind of compressible fluid model is appropriate for granular fluid, or, at least,
which aspects of the constitutive model can predict the vortex pattern? (3) What are the
origins of the characteristic length scale?
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To answer the first question, we consider that the formation of a shear band as given.
The fluid like granular material shears flows in fixed channel between nearly rigid
solids, as illustrated in Figure 1. A Newtonian incompressible fluid flows with a linear
distribution of velocities across the height of the channel (Figure 5(a)). However, if the
viscosity is dependent on density, and the material can redistribute density to minimize
the shear resistance 7, the idealized pattern is illustrated in Figure 5(b). Concentration of
material into nearly rigid (high viscosity) rotating discs, with vanishing viscosity on the
remainder of the volume, produces vanishing shear resistance.
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Figure 5. (a) Shear flow of a Newtonian fluid. (b) Idealized shear flow pattern of
a material with density dependent viscosity, which is allowed to arbitrarily
redistribute its mass to minimize shear resistance.

S. SUMMARY AND DISCUSSION

Consider a sample of high porosity, subjected to a constant pressure p and continuous
vibrations. The sample will compact until the porosity reaches its minimum value. For
a given size distribution of particles and their shape, this minimum porosity will depend
on the applied pressure. This state is called random dense packing (RDP) [39],
originally an empirical concept that has only recently been subjected to a more rigorous
rational treatment [40]. Numerical simulations of random packings of spheres under
varying simulated gravity [41] (equivalent to varying pressure) confirm the pressure
dependence of the RDP porosity.

The second stage of the flip mechanism in Figure 2 is dynamic; it sends waves through
the assembly. If the sample is loose, flips act as a disturbance, similar to externally
applied vibrations, causing compaction of the assembly. However, owing to a small
number of flips and fast attenuation of waves in granular assembly with interparticle
friction, the effect of flip disturbance is localized and small compared to the effect of
externally applied vibrations, even if the vibrations are achieved by gentle tapping on the
sides of the container. Therefore, we expect that the critical state porosity is larger than
the RDP porosity. Indeed, the experiments on identical steel beads (with friction) [42]
indicate that the critical porosity is higher than the RDP value: 0.4 and 0.36 respectively,
at zero pressure. In the absence of friction, the critical state could be as dense as the
RDP, as simulations with frictionless spheres indicate [43]. The above observations on
the intermittent flips mechanism enable us to formulate a micromechanical definition of
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the critical state as the state at which the compaction rate [caused by disturbances
following flips] and dilation rate [caused elastic relaxation in flips] balance out, resulting
in zero net volume change. For a given particle assembly, the critical state is a function
of both pressure and porosity. The line in the pressure-porosity space delineating
dilating and compacting states is the critical state line. Low pressure and low porosity
indicate a state with net dilation, while high pressure and porosity indicate a state with
net compaction. Note that both, local dilation and compaction of flipping cell clusters
occur on both sides of the critical state line, but their net sum is different.

As the mechanism of transverse relative motion of particles in a dense granular
assembly, rolling is energetically preferred to frictional sliding. Owing to the
geometrical constraints, pure rolling is impossible, so that dissipative frictional sliding is
engaged. Consequently, the information about rotation of a particle diminishes with
distance from the particle, resulting in an intrinsic length scale — rotation transmission
distance. Our numerical simulations indicate that this distance increases with increasing
width of particle size distribution, with increasing friction, and (weakly) with decreasing
pressure.

Numerical simulations reveal that the structure of force chains greatly affects the
transmission of rotations in a densely packed granular material. Rotations propagate
easily along strong force chains but not across strong force chains. The rotation
transmission through a particle is governed by the kinematic constraints imposed by the
surrounding force network which consists of both favorably and unfavorably aligned
force chains. The nonlocal force chain fabric tensor has been defined which describes
directional distribution of contact force strengths in a neighborhood of a particle.

Our results of rotation transmission distance [37] correlate with existing observations of
shear band widths in experiments [6-10] and numerical simulations [38], as well as with
the buckling force chain model [22]. The magnitude of angular velocity of particles
decreases with distance from the center of the shear band [20, 24]. Interestingly, the
nature of this distribution is preserved during the continuing deformation concentrated in
the shear band [44]. This indicates that our rotation transmission distance corresponds to
roughly half of the shear band width.
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CKOPAIIIBA IOCTUT'HYRA Y PASYMEBABY
AE®OPMAILIMJE U TEYEIHA 3PHACTUX
MATEPUJAJIA

Peszume: Kopucmehu meopujy epaposa, anaiuzupany cmMo monoiouKe RpomMene y CKyny
3pHa moxom Oeghopmayuje. Enemenmapnu mexanuzam paszyhene (nenokanuzosame)
depopmayuje cacmoju ce 00 cnopaduynux mononowkux obpma. Iloxazanu cmo Oa je
ounamayuja oupexman pe3yamam: nopacma (QpexeeHyuje MmonoiowmKkux oopma u
elacmuune penakcayuje xoja npamu ceaxu obpm. 0ba mexanuzma 3asuce 00
enacmuYHO2 NOMEHYUjana 3pua npe u nocie odpma, a opyeu je pezyamam Heyjeonauene

| SBOPHUK PAOOBA TPABEBUHCKOI ®AKYIITETA 24 (2014) | m



oucmpubyyuje mely3pHCKUX CULa OpP2aHU306aHUX V Janye cuid. 3amum, nocmampanu
CMO mpake cmMuyarba y 3pHacmum mamepujaruma. Hacmawnax mpaxa cmuyarma je
npahen @enukum Rnopacmom pomayuje (kompsoarwa) spua. Iowmo je xompaarwe
ocyjehieno cyceonum 3pHuMa, Rojasmyje ce Kapakmepucmuuna Ooyocuna. Ilpenoc
pomayuje y 0amom npaeyy 3aeuc 00 UHMeH3Umemd JaHya culd y mom npasyy u
HOPMAIHO Ha Re2d. Maxcumanna yoameHocm npeHoca pomayuje je ynopeousa ca
UMepeHUM WUpuUHamMa mpaka cmuyared. Kowauno, pasmampamo numarse cmeaparbd
BPMI02A YHYMAP MpaKe CMUyarba u noxasyjemo 0a 6pMmiodiCHO medere MUHUMUSUDA
Oucunayujy/omnop cMuyary y 3pHACmom Qyuoy.

K/bylmepelm: ﬂuﬂamauuja, mpaxka cmuyarbd, 6pMJia0IICHO mederve, anyCuHCZ cKaie
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