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Nikola Hajdin

STRUCTURAL MECHANICS AND STRUCTURES
Some author's contributions

1. Introduction

In my very long scientific and professional activity lasting almost 60 years | worked in several
branches of structural mechanics. Some of my first contributions in the beginning of the second half
of the twentieth century are not actual now but a big part of the contributions even from my first
period is according my opinion still actual.

It is my intention to give a review of some of them in the chronological order selecting only such
theoretical contributions which are directly connected with my engineering creations representing
some development in the technology of structures.

2. A numerical method based on integral equations

After the second world war the analytical methods were dominant in structural mechanics,
unfortunately not being able to solve often very complicated problems conceming the different
structural forms and geometrical and material non linearity.

It is obvious that some numerical procedures are needed. | tried to find some way how to solve
actual problems and find some numerical method which would be possible for practical application
using classical calculators.

This was in the period when the computers in engineering practice were unknown thing.

The result of research was a numerical method, first published in 1956 [1], [2]. [3]. based on
integral equations able to solve the problems with use of modest number of linear equations often

smaller than the number of equations in the very known method of finite differences.

I would like to explain it on the very simple problem of the elastic torsion:

e P
T+—5=C
[5 v
where
[ ] stress function
C given constant.

Adopting a mesh of orthotropic lines (Fig. 2.1), the consisting parts of differential equation along
the lines of the mesh

ar.‘

will be transformed into integral equations.
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Figure 2.1

Using the numerical integration one gets in the matrix formulation:

D =dp
O =By
ptg=C

And finally the solution of the problem

(l+B")p=C

The method was applied for solving several problems of different structures and other problems of
mechanics like dynamics of vehicles, hydraulics and analysis of arch dams [4], [5]. Majority of big

arch dams in former Yugoslavia have been analyzed using this method.

The arch dam Glaznja (Fig. 2.2). one of the biggest in former Yugoslavia, designed in 1968 was
analyzed using this method.

Figure 2.2



The method was quoted and used by several authors in Yugoslavia and abroad.

3. Creep of concrete and composite structures

After the second world war a new technology was introduced in the construction of bridges, known
as composite bridges, consisting of two materials with different characteristics - concrete and steel -
acting together in the structural system.

The concrete differs from steel as material having different relation between the stress and strain.
The concrete shows a time dependent strain (deformation) which in the composite action influences
stresses in the steel part of structure.

This makes more complicated analysis of the structures. The usual combination of the concrete and
steel was: concrete plate on the top of girder combined with the steel underneath the concrete plate
(Fig. 3.1).

Figure 3.1

It was my ambition to propose something more general: structure with the arbitrary position of the
concrete in the cross section.

The paper [6]. was published at the beginning of sixties of the last century, see also [7]. and
practically at the same time I designed a big bridge (with span of 135 m) across the Sava River at
Orasje (Croatia) completed in 1968 (Fig. 3.2), following my previously done theoretical
investigation [8].




This was the first bridge in the word with double composite action i.e. with the top concrete plate
and the bottom concrete plate in the zones of supports.

First bridge of this art was constructed in Germany 25 years later.

4. About the thin walled structures

A big part of my scientific activity was oriented to the theory of so called thin walled structures
which are extremely important in the structural practice.

They are often basis in the construction of different objects mostly in metal materials. In this topic I
wrote more than 30 papers, publications and two books in Springer edition [9], [10], [11].

These papers and books have been cited and used in several hundreds other papers and the books,
and used in many universities as the literature for post graduate students.

5. Fatigue of cables in cable stayed bridges

The cable material, a high strength steel, is very sensitive on fatigue. Due to this fact, the amplitude
between the maximum and minimum stress is limited. From other side the oscillation of loading due
to traffic in the case of railways bridges can be very high.

Because of that fact it was common opinion that the cable stayed bridges are not suitable for
railway bridges.

The theoretical studies. 1 have done, have shown that under certain conditions the application of
cable stayed bridges for railway traffic could be possible.

In order to realize this idea some theoretical and experimental studies have been necessary, among
others the bending of cables in the anchorage zones.

An analysis of this phenomenon was done [12] taking into account displacements of the anchorage
points in the pylon and girder (Fig. 5.1). using new type of cables with the wires in polyethylene
tube (Fig. 5.2).

-n_--.:-::zzz::zgg:'};:'-:}&

Figure 5.1
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Figure 5.2

The results we obtained have shown that these additional stresses are important and we respected
them during the construction of the first cable stayed bridge in the world for the railways traffic
only that | designed across the Sava river in Belgrade.

This phenomenon was later considered by others authors during the construction of several bridges
of this kind by introducing some additional devices in the anchorage zones.

The railroad bridge across the River Sava between the "Novi Beograd" and "Prokop” stations is
1928 m long in all [13]. [14]. It consists of a crossing over the river and approaches on the left and
right banks (Fig. 5.3).

Figure 5.3
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The approaches on the left bank section are 791.36 m long, the central section above the River Sava
and the Winter Harbor is 557.94 m and the approach on the right bank section 578.76 m long.

The main bridge structure — its central section — is a continuous girder (stiffening beam) with spans
of 52.74 + 85.00 +254.00 + 50.00 + 64.20 = 555.94 m, with cable stays in the central spans. The
stiffening beam consists of two box girders (Fig. 5.4) of a constant height of 4.45 m mutually
interlinked by an orthotropic deck, which carries the ballast and tracks.
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Figure 5.4

On both sides of the main span there is a pair of vertical pylons anchored in the bridge stiffening
girder. The cable stays are distributed in two vertical planes supporting the stiffening girder at
approximately every fifth of the 254 m span. All the cables are anchored above the supports of 50 m
long lateral spans. Adopting BBR system parallel wire cables with high fatigue resistant Hi-Am
anchors, along with measures to increase the bridge mass, optimum stress level, excellent cable
tension for dead loads and an insignificant influence of cable sag on vertical displacement of the
structure, was achieved.

The bridge was completed in 1979.

We should mention that this is the first time that this type of cables were used in Europe. Since that
time, up to date, this type of cable has been the dominant form used for cable-stayed bridges in the
world.

6. Stress and strain distribution at local points of cable stayed bridges

The elements which differ the cable stayed bridges from other structures are anchorage zones where
very high concentration of stresses occur.

The analysis of these stress concentrations which have usually two dimensional character is based
on finite element procedure [15]. A detailed analysis have been done on the basis of elastic and
elastoplastic model considering the safety margin of element in the case of fully plastic behavior
(Fig. 6.1, Fig. 6.2).
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Figure 6.2

This investigation have been used during the construction of the cable stayed bridge across the
Danube river in Novi Sad, completed in 1981 [16], [17].

There are other theoretical investigations which have been used in the construction of this bridge.

The main structure of the roadway bridge across the Danube in Novi Sad (Fig. 6.3) is a girder with
cable stays. With its 351 m span, it set, at the time of building, the world record for bridges of this
type. with pylons and stays in the central plane of the bridge.

Proceeding from the Novi Sad side, (the left bank), the bridge comprises:

a) the approach bank structure which is 301 m long, made of prestressed concrete.

b) the access composite structure of the left bank with spans of 4 x 60 = 240 m,
c) the main steel structure of the girder system with cable stays and spans of 2 x 60+ 351 + 2 x 60 =
591 m,

d) the access composite structure of the right bank with spans of: 3x60 = 180 m. The total length of
the bridge is 1312 meters. The bridge is designed to accommodate six traffic lanes.



Figure 6.3

The main bridge structure is undoubtedly the most important and most complex part of the entire
bridge. The stiffening girder or the main girder of the bridge has a box cross section, trapezoidal in
shape (Fig. 6.4).
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Figure 6.4

The height of the box is 3.8 m, the width of the lower plate is 13.0 m, and of the upper plate 27.48
m, of which the width of 16.0 m is an integral part of the closed cross section. The pylons of the
bridge are above the piers, at the ends of the main span, positioned in the axis of the bridge and
fixed in the stiffening girder. Three groups with 4 paralle] wire cables are arranged in a single plane
having a harp configuration. They are spaced along the main span of the bridge at distances of
54+48+48 m symmetrically on both sides.

This bridge was destructed during the NATO bombing (Fig. 6.5) and reconstructed in fully original
shape at the end of the year 2005 [18], [19], [20].



Figure 6.5

7. Patch loading - theoretical and experimental investigations

The stability problems and ultimate load behavior of steel plate girders have attracted a lot of
attention during the last few decades. The behavior of the plate girder subjected to patch load or
partially distributed load on the flange in the plane of a web without vertical stiffener bellow the
load was also intensively investigated.

Our research was concentrated on the behavior of girders with longitudinal stiffeners made on series
of tests on plate girders (Fig. 7.1)

by

e

Figure 7.1

Theoretically [21] some model was proposed leading to the value of ultimate load.
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We were included in the common research with the scientists in England and Czech Republic [22] .

As result of our investigations was a criterion for the ultimate load which was used in the British
standard.

8. Ship impact on structures (bridges)

Ship impact has attracted a considerable attention of engineers, mainly due to safety reasons in
bridge design.

In the last few years | have studied with my collaborators various problem concerning ship impact
problem on rivers and canals [23], [24], [25]. [26]. The main goal of our research has been an
estimate of impact actions on civil engineering structures which can be used as reliable base for the
analysis of impacted structure.

At the beginning the effort has been concentrated on bow impact problem and later on sideway
impact.

A considerable crushing of ship bow structure during a collision takes place. In the crushed zone
large rotations, displacements and even large strain components of individual structural elements
are present. However in the most cases the crushed zone is relatively small in comparison to the
length of a vessel.

Crushing characteristics of a ship bow structure have been analyzed on the basis of the Maier-
Doernberg experimental research. The reaction forces due to the collapse mechanism have been
divided on deck and bottom structures.

The deck or bottom structure is modeled as an assemblage of finite number of folded sections (Fig.
8.1).

tie

Figure 8.1 Formation of folds in the deck’s plate



Each folded section is divided in two transverse elements and one longitudinal element. The later is
assumed to buckle elastoplastically out of deck's plane.
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Figure 8.2 deformation behaviour of ship’s hull
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Figure 8.3 Relevant impact function F(t) for frontal ship impact

Trough supposed art of deformation a corresponding total reaction force has been obtained for each
step of deformation that means displacement of the bow into longitudinal direction represented as
the F-d function and shown on the Figure 8.2.
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The last step is the solution of the dynamic equation on the basis of the relation between the force
and deformation (Fig. 8.3).

This analysis has been used in the calculation of several bridge's piers in the rivers in Switzerland.

9. Last design achievement: bridge across the River Vistula

Last design achievement was the roadway bridge across the River Vistula in Plock in Poland, 1st
prize at an anonymous international competition (Fig. 9.1), cable stayed bridge with the span 370 m
and cables in one single vertical plane [27], [28].

The total length of the bridge is 1200 meters, of which 615 meters is the length of the main part of
the bridge over the Vistula riverbed and 585 meters the length of the access part of the bridge above
the inundation basin. The main bridge structure is a symmetrical steel structure, a cable-stayed
bridge, composed of: a continuous girder (with 2 x 60 + 375 +2 x 60 meter spans), cable stays and
two pylons.

Figure 9.1

The bridge girder has a torsionally stiff three-cell cross section of trapezoidal shape, (height 3.5 m,
lower plate width 13.0 m, upper plate width 16.5 m), cantilever arms 5.5 m wide. The pylons to
which the cable stays transmit their tensile force are made of steel and fixed in the girder of the
bridge. The cable stays are placed in the central, vertical plane of the bridge, in what is referred to
as modified harp distribution. Each cable stay consists of two individual cables (ropes), at axial
distance of 750 mm.

The bridge was completed in the year 2005.
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MODELIRANJE GRANICNIH USLOVA U MEHANICI
FLUIDA POMOCU FRAKCIONIH IZVODA

Vladan D. Djordjevic' UDK:532.517

Fenomeni strujanja koji se tretiraju u oblasti mehanike fluida su veoma
raznovrsni, i zastupljeni su kako u tehnici, tako i u prirodi koja nas okruzuje. Oni se
odlikuju sirokim spektrom vremenskih i prostornih razmera. Strujanja mogu biti
viskozna i neviskozna, laminarna i turbulentna, izotermska i neizotermska, mogu se
odnositi na nestisljiv 1 stisljiv fluid, fluid koji je elektricki provodljiv, ili neprovodljiv,
itd. S tim u vezi postoji i citav niz veoma razlicitih pocetnih i granicnih uslova koji se
koriste prilikom resavanja osnovnih jednacina kojima se opisuje strujanje fluida.

U radu ce se prikazati pokusaj da se razliciti granicni uslovi koje ima smisla
koristiti pri resavanju jednog te istog problema strujanja objedine u jedinstveni granicni
uslov koji bi bio definisan pomocu frakcionog izvoda. Teziste rada ce biti na
modeliranju granicnog uslova klizanja razredjenog gasa prilikom strujanja u
mikrokanalima. Pokazace se kako se to moze postici jednom malom modifikacijom
frakcionog izvoda tipa Caputo, kod kojeg red izvoda nije konstantan, nego na odredjeni
nacin zavisi od lokalne vrednosti Knudsenovog broja u kanalu. Ovaj broj predstavlja
meru razredjenosti gasa, jednak je nuli kod klasicnog strujanja gasa koje se tretira u
mehanici kontinuuma, a moze imati veoma velike vrednosti kod tzv. slobodnog
molekularnog kretanja. U kanalima mikro-, ili nano-razmera, koji se danas koriste u tzv.
MEMS tehnologijama, svi rezimi strujanja koji se odnose na vrednost Knudsenovog
broja mogu doci do izrazaja kod jednog te istog kanala, pa zato rezultati koji ce biti
predstavljeni, a koji se odnose na primenu frakcionog izvoda u modeliranju granicnog
uslova klizanja gasa, mogu imati veoma korisne primene.

! Acc. Vladan D. Djordjevic, Masinski fakultet, Univerzitet u Beogradu, Kraljice Marije 16, 11120 Beograd



THE MESHLESS ANALOG EQUATION METHOD. A
NEW HIGHLY ACCURATE MESH-FREE METHOD
FOR SOLVING LINEAR AND NONLINEAR PDEs

John T. Katsikadelis', UDK:519.61

Summary: A new purely meshless method to solve linear and non linear PDEs
encountered in mathematical physics and engineering is presented. The method is based
on the concept of the analog equation of Katsikadelis, hence its name meshless analog
equation method (MAEM), which converts the original equation into a simple solvable
substitute one of the same order under a fictitious source. The fictitious source is
represented by Multiquadrics Radial Basis Functions (MQ-RBFs). Integration of the
analog equation allows the approximation of the sought solution by new RBFs. Then
inserting the solution into the PDE and BCs and collocating at the mesh-free nodal
points yields a system of equations linear or non linear depending on the differential
equation, which permit the evaluation of the expansion coefficients. The method exhibits
key advantages of over other RBF collocation methods as it is highly accurate and gives
well conditioned coefficient matrix, which is always invertible. The accuracy is
increased using optimal values of the shape parameters of the multiquadrics by
minimizing the potential that produces the PDE. Without restricting its generality, the
method is illustrated by applying it to the general second order elliptic or quasi-elliptic
PDE. The studied examples demonstrate the efficiency and high accuracy of the
developed method.

Key words: meshless method, elliptic partial differential equations, radial basis
functions, analog equation method, anisotropic, inhomogeneous, nonlinear

1. INTRODUCTION

The interest in mesh-free methods to solve PDEs has grown noticeably in the past 20
years. This is mainly due to the fact that the traditional methods FDM, FEM and BEM,
although effective, exhibit crucial drawbacks. The FDM is ineffective for domains with
complex geometry. The FEM requires mesh generation over complicated 2D and
especially 3D domains, which is a very difficult problem and may require long time, in
some cases weeks, to create a well behaved mesh. The BEM circumvents the domain
discretization for 2D problems as it reduces the dimensions by one, but encounters the
domain discretization on the surface in 3D problems. Moreover, the convergence rate of
the traditional methods is of second order. The mesh-free MQ-RBFs (multiquadric radial

! John T. Katsikadelis, Prof. Structural Analysis, School of Civil Engineering, National Technical University,
GR-15775 Zografou Campus, Athens, Greece, tel: +30 210 7721652, E -mail: jkats@central.ntua.gr



basis functions) method developed by Kansa [1, 2] has attracted the interest of the
investigators, because it is truly meshless, very simple to implement and enjoys
exponential convergence. The primary disadvantage of the MQ scheme is that it is
global, hence the coefficient matrices resulting from this scheme are full and suffer from
ill-conditioning, particularly as the rank increases. Extended research has been
performed by many investigators to circumvent this drawback and several techniques
have been proposed to improve the conditioning of the matrix, [3], which, however,
complicate the implementation of the MQ-RBFs method and render it rather problem
dependent. Moreover, although the performance of the method depends on the shape
parameter of MQs, there is no widely accepted recipe for choosing the optimal shape
parameters. Therefore, extended research is ongoing to optimize these parameters [4].
Nevertheless, all these quantities are chosen arbitrarily or empirically.

The presented here new meshless RBFs method, the MAEM, overcomes the drawbacks
of the standard MQ-RBFs method. The method is based on the concept of the analog
equation of Katsikadelis, according to which the original equation, regardless of its being
linear or non linear, is converted into a substitute linear equation, the analog equation,
under a fictitious source. The fictitious source is represented by radial basis functions
series of multiquadric type. Integration of the analog equation yields the sought solution
as series of new radial basis functions. To make this idea more concrete we consider the

following elliptic BVP
Nu=g inW (1
Bu=g onG 2)

u = u(x) is the sought solution of eqn (1) and N , B linear or nonlinear operators. If A
is another linear operator of the same order as N , we obtain

Po=b inw ©)
where b = b(x) is an unknown fictitious source. Eqn (3) under the boundary condition
(2) can give the solution of the problem, if the fictitious source b(x) is first established.

To this end, the fictitious source is approximated by MQ-RBFs series. Thus, we can

write
N

M+
h=§ af nw (4)
j=1

where f; = Jr’+¢*, r = ||x- x; | represents the Euclidean distance of point x from
the collocation point x; and M,N represent the number of collocation points inside W
and on G, respectively. Eqn (4) is integrated to yield the solution

M+N
u é ajaj (5)
Jj=1
where #; = u,(r) is the solution of
o =¥ (6)
Since [/ is arbitra?/, it is chosen so that the solution of Eqn (6) can be readily
7

established, e.g. if [/is of the second order, we can choose JASENEE Subsequently, the
solution (5) is inserted into the PDE (1) and BC (2) to yield



M+N

é’} N[ij(x)a; J= g in W (7
4 Bli(x)a; =g on G (®)

=1

Collocation of Eqns (7) and (8) at the M + N nodal points (see Figure 1), yields a
system of linear or nonlinear equations, which permit the evaluation of the expansion
coefficients.

Boundary nodes
Total N

Interior nodes
Total M

Figure 1

The major advantage of the presented formulation is that it results in well behaved
coefficient matrices, which can be always inverted. Moreover, since the accuracy of the
solution depends on a shape parameter of the MQs, the position of the collocation points
and the integration constants of the analog Eqn (6), a procedure is developed to optimize
these parameters by minimization of the functional that produces the PDE as Euler-
Lagrange equation [4] under the inequality constraint that the condition number of the
coefficient matrix ensures invertibility. This procedure, which minimizes the error of the
solution, requires the evaluation of a domain integral during the minimization process,
which is facilitated by converting it to a boundary integral using DRM. The method is
illustrated by applying it to the solution of the general second order elliptic PDE. Several
examples are studied, which demonstrate the efficiency and accuracy of the method.

2. LINEAR ELLIPTIC PDEs

The method is demonstrated first by applied to the partial differential equation

Aty + 2By +Cityyy +Duye + Euyy +Fu = g(x) inxi W 9)
subject to the boundary conditions

u=a(x), xl G (10a)
ku+ Nu>xm = g(x), xi G, (10b)

where G= G, EG, is the boundary of W, which may be multiply-connected;
u = u(x) is the unknown field function; 4,B,K ,F position dependent coefficients



satisfying the ellipticity condition B*- AC < 0, m = (dn. + Bn,)i+ (Bn. + Cn,)j
is a vector in the direction of the con-normal on the boundary. Finally, k(x), a(x) and

g(x) are functions specified on G. We consider the functional [5].
_ o ¢l 24 O Fu Vo W (l 2 )d
J(u) Owg(A Uy +2Buy u,y +Cu,; - Fu®) gude 0, 2ku gu s (11)

We can easily show that the condition d/ (1) = 0 yields the boundary value (9), (10)
provided that

Ax+B,y=D, B.+C,=E (12a,b)

Therefore, the solution of Eqn(9) under the boundary conditions (10a,b) make
J(u)= min .

The boundary value problem (9), (10) under the conditions (12) for suitable meaning of
the coefficients occurs in many physical problems such as thermostatic, elastostatic,
electrostatic and seepage problems, where the involved media exhibit heterogeneous
anisotropic properties.

2.1 THE MAEM SOLUTION

The analog equation is obtained from eqn (3), if we take Pe= N2 . Thus we have

N%u = b(x) (13)
and (6) becomes
N’a; = f; (14)

which for f; = /r> + ¢* yields after integration

3
,;/:%f3+%fcz-%1n(c+f) +Glnr+ F (15)

where G = 0 for r = 0, otherwise it is arbitrary. As we will see, the arbitrary constants
G,F play an important role in the method, because together with the shape parameter c¢
they control the conditioning of the coefficient matrix and the accuracy of the results.

Thus, the solution is approximated by
M+N

u; @ aiy (16)
j=1

and it is forced to satisfy the governing equation and the boundary conditions. For this

purpose, it is inserted into eqns (9) and (10) to yield the system of linear equations

Aa=b (17)
where

r I T
A= gfhj By . b= {g a g} (18)

in which B is the operator defined by eqns (10a,b).

The approximation (16) with the new radial basis functions #; is better than the

conventional one with f; = v/r* + ¢, because they can accurately approximate not

only the field function itself but also the first and second derivatives. This shown in
Fig. 2.



Figure 2: Variation of f(r), i(r) and their derivatives along the line y = 0.5x
(c=05,G=1le- 2, F=0).

3. OPTIMAL VALUES OF THE PARAMETERS

The coefficients a; evaluated from eqn (17) can be used to obtain optimal values of the
shape parameter centers of the multiquadrics and the integration constants G,F by
minimizing the functional (11). The evaluation of the domain integral is facilitated, if it
is converted to boundary line integral using DRM [5]. Thus, denoting by

R(x) = %(A Ui +2Buy u,y +Cu,y - Fu® )+ gu (19)
and approximating the integrand of the domain integral by
M
R(X); 4 ai(r) (20)
j=1
we obtain
M
OROHW; & @ ()W @)
J=
Application of (20) at the collocation points yields
a=U'R, U=[a@)], R={R(x)} (22)
Subsequently, using the Green’ reciprocal identity
(‘)W(szu - uN*y )dW= (‘)G(vu,n - uv,, dds (23)

for v =1 and u = W, , where W, is a particular solution N*¥, = ii; we obtain

o, RxaW; 1" Q U'R (24)



where Oy = (‘)Gk Wi (r)ds and 1" = {1 1 L 1}.

It is apparent that the functional J(#) depends on the following sets of parameters:

(). The shape parameter ¢ and the arbitrary constants G, F' .

(i1). The 2M + 2N coordinates x,,y; of the centers.

Therefore, we can search for the minimum using various levels of optimization
depending on the design parameters that we wish to be involved in the optimization
procedure. Although, the functional J(u) is quadratic with respect to a; , the inclusion
however of ¢ and x;,y; requires direct minimization methods for nonlinear objective
functions.

4. NONLINEAR EQUATIONS

For nonlinear PDEs the procedure is exactly the same as for linear equations. The only
difference is that equation corresponding to eqn (17) for the evaluation of the
coefficients is a non linear algebraic equation.

5. NUMERICAL EXAMPLES

Example 1. As a first example we obtain the solution of the following boundary value
problem for complete second order linear partial differential equation

A+ y e + 2oy + (1+ 2X )y + xus + yuy + u = 7x° - Sxy + 59°+ 4 in W
where W is the ellipse with semi-axes a = 5, b= 3.

4
A
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Figure 3: Elliptic domain and nodal points

Three types of boundary conditions have studied

(i) u = a(x) on G (Dirichlet)

(i) Nuxm= g(x) on G (Neumann)

(iii) Nuxm = g(x) on G,, u=a(x) on G, (mixed)
where G, = {y = byJ1- x*/a>, 0£ x£a}, G.,=G- G, and



a(x)=x* - xy + )’

L+y )y xp a’y (2" pu
+ Y2 - )+ + -x+
g0 = E g e ) %"‘a— p )
The analytical solution is wewer = x° - xy + y>. The results obtained with N = 60,
M=125, ¢=7, G=5¢-9, F=0 are shown in Fig.4. Fig. 5 shows the

convergence of RMS = \/ a {u@)- vew (@)Y Ueaer (1) ¥ with increasing shape

parameter. In all three cases the computed results are practically identical with the exact
ones.
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Figure 4: Nodal values of the solution and its derivative in Example 1. Solid line:
computed.
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Figure 5: Dependence of RMS on c in Example 1 (case i)

Example 2. As an example of non linear equation we study the following BVP
describing the steady state heat conduction problem in a plane body with non linear
material properties

2y + M

Uuo

KNy (u? + up)= f(x,y) in W= (0,1)" (0,1)

Figure 6: Nodal values of the solution and its derivatives in Example 2. Solid line:
computed.



under mixed boundary conditions

un(x,00=-2x>, 0£x£1 w(Ly)=21+y), 0£y£1
us(x,1)=2x(1+x), O£ x£1 u.(0,y)=0, 0£y£1

The employed data are:

F= 2k + )+ BBt a8, ko= 1 o= 300, b =3

uo

The results obtained with ¢ = 0.888, G = le- 9, F = 0 are shown in Fig. 6.

6. CONCLUSIONS

A new truly meshless method, the MAEM (Meshless Analog Equation Method) is
developed for solving PDEs, which describe the response of physical systems. The
method is based on the concept of the analog equation, which converts the original
equation into a Poisson’s equation. Using MQ-RBFs to approximate the fictitious source
and integrating the analog equation lead to the approximation of the sought solution by
new RBFs, which have key advantages over the direct MQ-RBFs. Namely

e The condition number of the coefficient matrix is controlled, thus it can be always
inverted to give the RBFs expansion coefficients.

e The method gives accurate results, because the new RBFs approximate accurately
not only the solution itself but also its derivatives.

e Optimum values of the shape parameters, centers of RBFs and integration constants
can be established by minimizing the potential that yields the PDE. Therefore, the
uncertainty of choice of shape parameter is circumvented. It was also observed from
the studied examples that a regular mesh of nodal point gives good results and the
solution was not sensitive to the position of the RBFs centers.

e The method depends only on the order of the differential operator and not on the
specific problem.

Moreover, as other RBFs methods:

o [t is truly meshless, hence no domain (FEM) or boundary (BEM) discretization and
integration is required. It also avoids establishment of fundamental solutions and
evaluation of singular integrals.

e The method can be in a straightforward manner employed for the solution of
problems in higher dimensions or other type PDEs (parabolic and hyperbolic).
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BEZMREZNI ANALOGNI METOD JEDNACINA. NOVI,
VEOMA TACAN, BEZMREZAN METOD ZA RESAVANJE
LINERANIH I NELINERANIH PARCIJALNIH
DIFERENCIJALNIH JEDNACINA

Rezime: U radu je prikazan novi, potpuno, bezmrezni metod za reSavanje lineranih i
nelineranih parcijalnih diferncijalnih jednacina koje se susrecu u matematickoj fizici i
inzenjerstvu. Ovaj metod je zasnovan na konceptu Kastikadelisovih analognih jednacina,
po kome je i dobio ime: “Bezmrezni analogni metod jednacina (MAEM)”, koji pretvara
pocetnu jednacinu u jednostavniju, reSivu, zamenjujucu jednacinu istog reda sa
fiktivnom osnovom. Fiktivna osnova je predstavijena preko multikvadratnih radijalnih
baznih funkcija (Multiquadrics Radial Basis Functions ili MQ-RBFs). Integrisanje
analogne jednacine dozvoljava aproksimaciju trazenog resenja preko novih RBF-ja.
Uvrstavanjem reSenja u PDJ i granicne uslove i njihovim grupisanjem u
nediskretizovanu tacku dobija se linearni ili nelinerani sistem jednacina, zavisno od
diferencijalne jednacine, koji omogucava izracunavanje koeficijenata razvijanja. Metod
pokazuje kljucne prednosti nad drugim metodama grupisanja preko RBF-ja kroz svoju
tacnost i matricu koeficijenata koja je uvek dobro definisana i regularna. Tacnost se
povecava sa izborom optimalnih vrednosti parametara oblika multikvadratura kroz
minimizaciju potencijala koji se generise u PDJ. Bez umanjenja njegove generalizacije,
metod je prikazan kroz primenu na opstoj elipticnoj ili kvazi-elipticnoj PDJ drugog reda.
Prikazani primeri demonstriraju efikasnost i veliku tacnost razvijenog metoda.

Kljuéne reci: bezmrezni metod, elipticne parcijalne diferencijalne jednacine, radijalne
bazne funkcije, analogni metod jednacina, anizotropija, nehomogenost, nelinearnost



DYNAMICS OF SANDWICH STRUCTURES

(Invited Plenary Lecture)

Katica R. (Stevanovi¢) Hedrih', UDK: 66.096.4

Summary: A survey of models and dynamics of sandwich structures composed of a number of
plates, beams or belts with different properties of materials and discrete layer properties are
presented and mathematically described. The constitutive stress-strain relations for materials of
the sandwich structure elements are presented for different properties: elastic, viscoelastic and
creeping. The characteristic modes of the sandwich structure vibrations are obtained and
analyzed for different kind of materials and structure composition. The visualization of the
characteristic modes and amplitude forms are presented. Structural analysis of sandwich structure
vibrations are done.

Key words: Dynamics, sandwich structure, plate, beam, visco elasticity, relaxation kernel,
structural analysis, fractional order derivative, moving sandwich double belt system, two- and
multi-frequency regimes, vibrations.

1. INTRODUCTION

Plates, beams and belts have been extensively used as structural elements in many
industrial applications. Investigation of vibrations of plates dates back to the 19th
century. There had been a great amount of research and literature presented over the last
century. The problem of free vibrations of a circular plate was first investigated by
Poisson (1829) [25]. Rayleigh (see Ref. reprint 1945) [27] presented a well known
general method of solution to determine the resonant frequencies of vibrating structures.
The method was improved by Ritz [26] assuming a set of admissible trial functions. This
approach is one of the most popular approximate methods for vibration analysis of the
plates, shels, beams. There have been extensive studies of vibrations of plates for various
shapes, boundary and loading conditions for nearly two centuries. Interested readers are
refereed to excellent reviews of Leissa (1987) [23] and Liew et all. (1995) [24] of this
class of problems and to the list of references.

Mechanics of hereditary medium (material) is presented in scientific literature in
fundamental monographs by Rabotnov, Yu.N. [28], Rzhanitsin, A.R.[29], Savin G. N.
[30], Ruschisky Yu. Ya and O.A.Gorosko (see Gorosko and Hedrih (2001)[2]) and it is
widely used in engineering analyses of strength and deformability of constructions made
of new construction materials with hereditary properties. This field of mechanics is
being intensively developed. Nowadays scale of utilization of these materials can be
compared with that of using metals. The book by Enelund (1996) [1] contains some
applications with elements of fractional calculus in Structural Dynamics.

! Katica R. (Stevanovi¢) Hedrih, Professor, Dr of Technical Scienses, Dip. Mech. Eng., Academian of UHEAS
and ANS, Faculty of Mechanical Engineering University of Ni§, Mathematical Institute SANU Belgrade,
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The fast development of science of material and experimental mechanics, of methods of
numerical analysis, led to the creation of different models of real material bodies and
methods for studying dynamics and processes which happen in them during the
transduction of disturbance through deformable bodies. In the process of creating a real
body model certain simplifications and approximations are done [28,29,30]. There also
exist different approaches to creating real body models. One such approach is
represented by a model of discrete system of material points which are connected by
certain ties, and the number of which is then increased to create a continuum [5,18], the
motion and deformable wave propagation of which was then described by using partial
differential equations [6,7,8,9]. And then, due to the impossibility of solving them
analyticaly, the approximation method was used for the purpose. Methods of
discretization of systems of partial differential equations and methods of physical
discretization of continuum were used. Computers were used for obtaining numerical
solutions.

In an attempt to make a selection of authors who gave significant copntributions to the
knowledge on deformable body dynamics we came to a conclusion that it would require
an entire review paper, which is not the goal of this paper so we shall restrict ourselves
to citing authors on whose papers we directly rely.

2. DISCRETE CONTINUUM MODELS AND ELEMENTS

In this paper we shall use three basic models of sandwich structures with light constraint
elements in the form of layer between plates, or beams or belts. We shall define
sandwich structures as a multiplate system, or multibeam system or multi belt system in
which deformable bodies (plates, or beams or belts) are interconnected by light standard
constraint elements [2] which have the ability to resist axial deformation under static and
dynamic conditions.

Basic elements of sandwich structures in multi deformable body systems are:

A* Material deformable bodies in the form of: A.a* thin plates [26]; A.b* thin beams
[26], and A.c* elastic belts [11], and every with infinite number degree of freedom.

B* Light standard constraint element [2] of negligible mass in the form of axially
stressed rod without bending, and which has the ability to resist deformation under static

and dynamic conditions; Constitutive relation between restitution force P and
elongation w or V can be written down in the form
fmr(P,P,W,W,D,J,”,C,E, w,c,,T,U,.... ):O, where D and J are differential integral

operators (see Refs. [2, 3, 14,15]) which find their justification in experimental
verifications of material behavior [1, 28, 29, 30], while n,c,c,u,c, .... are material

constants, which are also determined experimentally.

For every single light standard constraint element of negligible mass, we shall define
dynamic constitutive relation as deterministic change of forces with distances and
changes of distances in time, with accuracy up to constants which depends on the
accuracy of their determination through experiment.

The accuracy of those constants laws and with them the equations of forces and
elongations will depend not only on knowing the nature of object, but also on our having
the knowledge necessary for dealing with very complex stress-strain relations. In this



paper we shall use three such light standard constraint elements, and they will be (for
more see Refs. [2] and [18]):

B.1* Light standard ideally elastic constraint element for which the stress-strain
relation for the restitution force, as the function of element axial elongation, is given by a
linear relation of the form

P=-—cy, )]
where ¢ is a rigidity coefficient or an elasticity coefficient. In natural state, non-stressed
state, force and deformation of such elemnt are equal to zero.

B.2* Light standard hereditary constraint element (see Ref. [2]) for which the stress-
strain relation for the restitution force as the function of element elongation is given by a
relation:

B.2. a* in differential form:

DP=Cy or nP(t)+ P(t) = ney(t)+ey(t) )

where, the following differential operators are introduced:

D:ni+l and C:nci+5. 3)
dt dt

and nis a relaxation time and c,c are rigidity coefficints — momentary and prolonged
one.
B.2. b* in integral form

P(t)= c{y(t)—jR (¢- T)y(r)d‘r} > “)

where R(-7)=S —C ) is relaxation kernel (or resolvente). %)
nc

B.2. ¢* inintegral form

W)= l[p(m [K(- f)p(f)df} : (6)

¢ 0

where  K(1-7)== =g e’i(w) is kernel of rheology (or retardation). @)

nc

B. 3* Light standard creep constraint element [5, 18] for which the stress-strain
relation for the restitution force as the function of element elongation is given by
fractional order derivatives in the form

P(t) = ~le,m(t) + ¢, D7 [wlr)] ®)

where D?[e] is operator of the " derivative with respect to time # in the following
form:
d*wx, y,t " 1 dewlx,yr
Dl , = L2 e ) = 0 2.0),, ©)
dt T(l-a)dty (1-7)
where c,c, are rigidity coefficients—momentary and prolonged one [2], and o a

rational number between 0 and 1, 0 < ¢ <1, [3, 5, 18].

In this paper we shall define sandwich structure as a system of material deformable
bodies interconnected by distrbuted light standard constrain elements (elastic,
hereditary or creep) and which are, in natural state, on defined interdistances (when
distributed light constraint elements are unstressed). Sandwich structure is ideally elastic




if it's material deformable bodies (plates, beams, belts) are pure elastic and bodies are
interconnected by distributed light standard ideally elastic constraint elements [7, 10, 11,
18, 19, 20, 21]. Sandwich structure is a standard hereditary disrete continuum [3, 5, 18]
if it's material deformable bodies (plates, beams, belts) are built of hereditary material
and their bodies are interconnected by light standard hereditary elements. Sandwich
structure is a standard creep discrete continuum [3, 14, 15, 16, 18] if its material
deformable bodies (plates, beams, belts) are built of material with creeping properties
and bodies are interconnected by light standard creep elements.

We shall define discrete-continuum homogeneous chain system (5, 18] as a system of
equal material deformable bodies (plates, beams, belts) [3, 9, 14] which have same
boundary contours and boundary conditions and can move transversaly to the
characteristic «elastic surface» for plates wl,(x, y,t),i =1,2,..,M and «elastic line» for

beams and belts V, (Z,t ),i:1,2,..., N and which are interconnected by standard

constraint light elements equal material constants. The chain is ideally elastic if all
elements are ideally elastic [26]. The chain is standard hereditary if all elemets are built
of hereditary material [2]. The chain is standard creep if if all elemets are built of
material with creep properties [18, 5]. The number of degrees of freedom of each of
these chains is equal M -infinity, where A is number of deformable bodies in chain,
since we hypothesize that each deformable body can move transversaly to the
characteristic «elastic surface» for plates, and «elastic line» for beams and belts, and
which are interconnected by standard constraint light elements equal material constants.

3. SANDWICH STRUCTURE MODELS

3.1* Multiplate and multibeam sandwich system. Theoretical problem formulation and
governing equations [3, 15]. Let us suppose that plates are thin and that it is not
deplanation of the cross sections in the conditions of the creep material [8, 15]. Also, we
suppose that always cross sections are orthogonal with respect to the middle surface
(plane) of the plate. If thin plates are creep bent with small deflection, i.e., when the
deflection of the middle surface is small compared with the thickness /4, the same
assumption can be made for both plates as in the Hedrih's papers [15, 3, 14].

Now, let us consider finite number A isotropic, creeping, thin plates, width #,,

i=12,..,M, modulus of elasticity E;, Poisson’s ratio x; and shear modulus G;, plate
mass distribution p, . The plates are of constant thickness in the z -direction (see Fig. 1).

The contours of the plates are parallel. Plates are interconnected by corresponding
number M -1 creeping layers with the fractional order derivative constitutive relations
type with constant surface stiffnesses. These creep-layers connected multiple plate
system are a composite structure type, or sandwiched plates, or layered plates.

The origins of the corresponding number A coordinate systems are M corresponding
sets at the corresponding centres in the nondeformed plates middle surfaces as shown in
Fig. 1. and with parallel corresponding axes. The plates may be subjected to either a
transversal distributed external loads ¢,(x,v,7), i=1,2,...,M along corresponding plates
external surfaces. The problem at hand is to determine solutions.

The use of Love-Kirchhoff approximation make classical plate theory essentially a
two dimensional phenomenon, in which the normal and transverse forces and bending



and twisting moments on plate cross sections (see book by Raskovié, 1965;[26]) can be
found in terms of displacement w,(x,,¢), i=12,..,M of middle surface points, which

is assumed to be a function of two coordinates, x and y and time .

3 3
ER Eioh i=12,.,M corresponding bending
12(1- u?)

D, = ,
12— u?)

cylindrical rigidity of creep plates. For homogeneous and isotropic plates material with

parameters of material creep properties are equal «, =a, =« ; also, coefficients of

Let us denote with D, =

rigidity of momentaneous and prolongeous one are: E,, =E,, =E, and E,, =E,, =E, in
all directions at corresponding point.. The coefficients of rigidity of momentaneous and
prolongeous one for creep layer are ¢ and c,, and the parameter of layer material creep
properties is 0<a <1.

Now, by using results of Hedrih, from papers [3, 14, 15], the relation (see Appendix B
1. from [15] and [8]) between stress components and strain components expressed by
transversal displacements w(x,y,7) of the plate middle surface corresponding point
N(x,,0) and coordinate z of the corresponding plate point N(x,y,z). than we can write

the following system of the M governing coupled partial fractional order differential
equations of the creep connected multi plate system dynamics:

o NTTOTIEIOMIRI e b sbbuMRRY ™
() PP L00E ¢ Mﬁﬁﬁﬁﬁﬁﬁ L, 0
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Figure 1. A creeping connected multi plate system Figure 2. A creeping connected multi beam system.
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M + cé){(l +x,D¢ XAAWi (x, v, t)]}+ a(zi) {(l +x.D¢ lw,. (x, ¥, t)— w, (x, Vv, t)]}—

o’
_a(zi){(l+K;Dt‘Z wM(x,y,t)—w,.(x,y,t)]}:—ql.(x,y,t)
i=2,.,.M-1 (10)
W-‘—C W {(1+K D¢ IAAWM x , Vs t)]}+a {(1+K‘ D¢ IWM x Vs t) Wy 1(x ¥, t)]}=—qM(x,y,t)

formulated in terms of M unknowns: the transversal displacement w,(x,y.),
i=12,.,M in direction of the axis z, of the plate middle surfaces (see Figure 1),
where §,(x,y,t) loads and:
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The solutions of the governing system of corresponding coupled partial fractional order
differential equations (10), we take in the eigen amplitude functions W), (x.»),

i=12,..M, n,m=1234,. .0 expansions, from solution of the basic problem with

decoupled equations [3, 14, 15] and with time coefficients in the form of unknown time
functions 7j; )"m( 1), nom=1234,..%,i=12,.,M describing their time evolution:

xy’ ZZW nmxy () ” ’M (11)

n=l m=l1
Than after introducing the (11) into the governing system of coupled partial fractional
order differential equations for free and also for forced double plates oscillations (10)
and by multiplying first and second equation with W, (x,y)dxdy and after integrating

along all surface of the plate middle surface and taking into account orthogonality
conditions [15] and corresponding equal boundary conditions of the plates, we obtain the
mn -family of systems containing coupled only M-ordinary fractional order differential

equations for determination of the unknown time functions Tjy,,(t), i=12,..M,

nom=1234,.0 inthe followmg form:

Ty (0)+ 00 (1+ Ko ) . (t) (a 0+ 9 )T(z)nm (1)= Sy (2)

Ty )+ 200],,,, (1+/c ) ( ) (a(f +a,)aan IT () Ty )]:f([)nm(t)
oM — nm—1234 .00 (12)

Ynm D v )T (a(ZM )a nm Dtu )T(M ~1)nm (t) = _-f(M Ynm (t) ’

where time known function f nm( ), i=12,..,M are deﬁned by following expressions:

ab
[[@.(e, ) Wi, (x, »)exely
) .

I .[ Weym (x, y)]z dxdy
00

T(M)nm(t)'FC()(z (1"1‘/? (M

(13)

The system of coupled fractional order differential equations (13) on unknown time-
functions Ty, (t), i=12,..M, nm=1234, .00, can be solved applying Laplace
transforms [15].

For the case of the multibeam sandwich system [16, 21] we obtain similar system of
coupled fractional order differential equations as (12), but with unknown time-functions
Ty (t), i=12..m> s=1,2,3,4,...00 for every S -family of systems containing coupled
only M-ordinary fractional order differential equations.

3.2* Multibelt sandwich system. Theoretical Problem Formulation and Governing
Equations [11]. The sandwich belt system contain two belts constrained by distributed
discrete light neglected mass belts with stiffness € . Both belts are represented by area of
constant cross sections 4 along length ¢ between rolling and fixed bearings 4 and B,
and by o the density of the belt material. Let us suppose that sandwich double belt



system is moving in the direction x with an axial velocity v(¢). Transversal vibrations of
sandwich double belts are represented by transverse displacements w, (x,t) of lower belt

and w, (x,t) of upper belt. Also, let us suppose that displacement is small, and that cross
sections during the transverse vibration have no deplanations. Also, if we suppose that
both belts are loaded by active axial force, due to the belts’ tension, than in stressed state
in the cross section appears normal stress with intensity o, almost surely of constant
intensity during the time vibrations and along the length of sandwich belt between
bearings. Than we can conclude that normal stress O in strings of sandwich double
string system for a cross section during vibrations change only direction.
Let us introduce the following partial differential operator: L | [0]
LH[O]za—ZZ—(cj—vj)a—z,Jer o +26v, 9259 g (14)
’ ot ox* oxOt * ox ot
and governing partial differential equations are obtained the following form:

[w (x,2)]-x*w,(x,2)=0 L, [w (x,t)]—l(zw (x,t):O (15)
where \f _ \/7 s 55—t . By using independent coordinates in the following
PA

form: &=ux, n= Y+t and by transforming governing partial differential

-

equations we obtain these equations in the simples form suitable for solution obtain.
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Figure 3. Transversal vibrations of the axially moving sandwich belt system .
a* Kinetics parameters of the transversal vibrations of the axially moving sandwich belt.



b* Elementary segment of the axially moving sandwich belt with length dx and notations of the kinetics
parameters; ¢* Eigen amplitude function for first three modes of the double belt system vibrations,

Amplitude forms for transversal vibrations of the axially moving double sandwich belt system for some of
possible cases: for first (d*) and (e*), for second( f*) and for third (g*) mode.

Solution of the previous partial differential equation (15) can be looked for using
Bernoulli’s method of particular integrals in the form of multiplication of two functions

[26, 22], from which the first X(;)(f)’ i=12 depends only on space coordinate & and
the second Y([)(n), i=1,2 is function of 77:

W (&) =X (€)Y, () i=12 (16)
and after denotation in the forms: 2 _ 2% % G =V, we
i ) iC -V, '
obtain:
L, ¥, ()} @', ()=0 and fg[X(/)(f)]+Pz+ e~ }Xm(f):() an
0 0

and general and particular solutions must satisfy the boundary conditions: displacements
in the rolling bearing must be equal to zero. And final one set of possible solution sets is:

5 . ST -

X, (x)=¢"" sin 27 x where  5___ MW (18)
! ¢
Y()x(x,t):e‘[r‘-w]{As cosq{ 2"0 . x+t]+Bvsinqx[ zvo : x_HH (19)
G~V G~V
where
(02 _2) 2 2
q(]z)y:$ (M) w‘f‘(/(z—é‘z)@’ S=1,2, ...... (20)
' Z CU Co

4. CONCLUDING REMARKS

The M coupled partial fractional order differential equations of transversal vibrations of
a creeping connected multi plate system have been derived and presented by using
author's results from Refs. [3-20]. Also, the M coupled partial fractional order
differential equations of transversal vibrations of a creeping connected multi beam
system have been presented in the light of mathematical analogy.

The analytical solutions of a system of M coupled partial fractional order differential
equations of corresponding dynamical free and forced processes are obtained by using
classical method of Bernoulli’s particular integral and Laplace transform method. By
using trigonometric method [26, 17, 2] and solution of the obtained system algebra

equations with respect to L{T(l.)nm (t) ,i=2,...M—1; n,m=12,3,4,...00. we obtain the

determinant A, (p) of the nm -family of the system equations obtained by Laplace

transform of the system equations (12).

For analysis, we can compare Laplace transform for the case of coupled double plates
and for uncoupled plates for creep system and case for an ideal elastic system when
a =0, and we can conclude the following: It is shown that two-frequency-like regime



for free vibrations induced by initial conditions of double plate system corresponds to
one mode vibrations. Analytical solutions show us that creeping connection between
plates in M -multi plate system caused the appearance of similar M -frequency regime
of the time function correspondent to one eigen amplitude function of one mode, and
also that time functions of different the mn -family vibration modes n,m =1,2,3,4,...0 are
uncoupled. It is shown for every shape of vibrations. It is proved that in one of the mn -
family vibration modes n,m=1234,..0 of the all M -creep connected plates are
present M possibilities for appearance of the resonance-like dynamical states, and also
for appearance of the dynamical absorption-like. And, at the end of this part, the analogy
between mathematical descriptions of the discparate systems with plates and beams as in
Refs. [2, 16, 17] is possible to be described by same type of the system equations. Also,
the phenomenological mapping between dynamical processes is possible to identify.

And, at the end of the paper, if we compare the expressions for coupled and uncoupled
two belts, we can conclude that for uncoupled belts’ vibrations contain one frequency
damped vibrations in one own amplitude shape, and for coupled vibrations contain two
frequency damped vibrations in every one amplitude shape, and that these two-frequency
dumped vibrations are uncoupled with relation of the other shape own vibrations. This is
visible form expressions (17-19), as well as from following § -th particular solution:

5| st 15k s=0 2(.2_ 2V 22
wi, (x.t)=e [C““'Vﬁ I] Zsin%x R, cos \/(SZJ (c"‘}O)Jr(/cz—&z)e"2‘}0(2‘)02x+t]+ﬂv
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DINAMIKA SENDVIC STRUKTURA

Rezime: Dat je pregled modela i dinamike oscilovanja sendvic struktura sastavljenih od
greda, ploca i traka od materijala razlicitih svojstava. Prikazne su konstitutivne relacije
materijala elementa strukture: sa svojstvima elasticnosti, viskoelasticcnosti i puzanja. Dat je
matematicki opis dinamike sendvic struktura. Ukazuje se na svojstva oscilacija i vibracionih
viskoelastiéni}{7 procesa. Data je vizuelizacija pojedinih modova procesa.

Kljuéne reci: Dinamika, sendvic struktura, ploca, greda, traka, viskoelasticnost,
relaksaciono jezgro, rezolventa, izvodi necelog reda, analiza strukture vibracionih procesa.



On the conditions for the existence of a plane

of symmetry for anisotropic elastic material

Jovo P. Jarié !

Abstract: We consider the problem of determining necessary and sufficient
conditions for the existence of symmetry planes of an anisotropic elastic material.
These conditions are given in several equivalent forms, and are used to determine
special coordinate systems where the number of non-zero components in the elas-
ticity tensor is minimized. By the method presented here it is also shown that an
elastic solid has at least siz coordinate systems with respect to which there are only
18 non-zero elastic constants and cannot possess more then ten traditional and
distinct symmetrics by planes of symmetry.

1 Introduction

This work is mainly motivated by the papers by Cowin and Mehrabadi [1] and by
Norris [2]. We cite those results of there papers which are related to the results
derived here. That also makes this paper self-contained.

In their extended paper [1] Cowin and Mehrabadi considered the problem of
determining the material symmetry of an anisotropic elastic material. The main
results of paper is based on the following
theorem 1:The conditions

CirpqUrOplq = (CrspqQrasplq)a; (1.1)
Cikkj@j = (CpkqQplq)Qi

Cijkkaj = (Cpgkkpaq)a;
and

Cijkmbjbrtm = (Cropgbsbparag)a; (1.4)

1Jovo Jarié¢, Faculty of Mathematics, Studentski trg 16, Belgarde, Serbia & Monte Negro
e-mail: jaric@matf.bg.ac.yu



consider a set of necessary and sufficient conditions for the vector a to be the
normal to a plane of symmetry of a material of given elasticities cijrm. The
vector b is any vector perpendicular to a. 2

Here ¢;jim are Cartesian components of the Hook’s elasticity t e n s o r for a
homogeneous elastic solids which possesses the symmetries

Cijkm = Cjikm = Cijmk = Ckmij- (1~5)

To prove sufficiency of the theorem, it was shown that if a and b are solutions of
(1.1-1.4), than a is normal to a plane of symmetry and, with no loss of generality,
one can take the coordinate axes x; and xo along a and b, respectively. With
respect to such a coordinate system (1.2-1.4) yield

cit11 = c1111641 Cikkl = Cikk10i1 (1 6)
cit11 = c1111641 Ci221 = C1221041
or
C1112 = C1113 = C2212 = 2213 = C2321 = C2331 = C€3312 = 3313 = 0. (1-7)

The conditions (1.6) are requirements for monoclinic material symmetry where

the x1—coordinate direction is the normal to the plane of symmetry. Than, they

concluded that any solution of (1.1-1.4) is the normal to a plane of symmetry.
The same problem was considerd by Norris [2] and the same theorem was stated

in the following simplified version, due to Cowin, ([3], [4]),

theorem 2: The necessary and sufficient conditions that the direction a be normal

to a plane of symmetry are

Cirpq@raplq = (Crquarasapaq)ai (1.1)

Cijkmbjbkam = (Crqubsbparaq)ai (12)

for all direction b perpendicular to a.

These two theorems differ in conditions (1.2) and (1.3), which are, according
to Norris, consequences of (1.1) and (1.4). From a mathematical point of view
it means that the conditions (1.2) and (1.3) are redundant. To prove that (1.3)
follows from (1.1) and (1.4) Norris [2] made use of (2.7) and write

Cijkk@ibai = cijmaj(ara; + bgrbsi)bai

= Cijka;aka; + Cijribaibarbaia; + cijribaibsibsia;.

Then the first term on the right-hand side of this expression vanishes using (1.1)
and, according to Norris, the secodn and the third terms are also zero by virtue of
(1.4), what is not so obvious. Therefore ¢;;rra; is perpendicular to b,, (o = 2,3),
so it must be parallel to a and (1.3) follows.

2Here and throughout the paper we used the summation convention for repeted indices.



Because of these and of the importance of problem considered, particularly
from practical point of view, we belive that is worthwhile to examine it from a
different angle. In fact, making use of the decomposition of a tensor in a coordinate
system define by the orthonormal vectors a, b, (o = 2,3), we derive exactly eight

relations
Ca = Cijkibaiajara; =0,

(a)

which constitute a set of necessary and sufficient condition for the vector a to be
normal to a plane of symmetry of given elasticity tensor. We then proceed to
derive these conditions in several equivalent forms. The conditions (a) enable us
to define also special coordinate system where the number of non-zero components
in the elasticity tensor is minimized. In addition to it we were able to prove the
theorem which states that an elastic solid has at least six coordinate systems with
respect to which there are only 18 non-zero elastic components. This represents
the extension of Norris’ result [2], who proved the existance of at least three such
coordinate systems.

Further, under the assumption that the body possesses more than one plane
of elastic symmetry, it is shown, by the use of the conditions (a), that a material
cannot possess more than ten traditional and distinct symmetries by planes of
symmetry, the result which is well known.

CaBy = CBa~y = Cijklbaibgibyra; =0

2 Preliminary definitions and theorems

Let R be a symmetric improper orthogonal tensor representing the reflection in a
plane whose unit normal is a. Then [3],

Rij = 0i; — 2a,a;, (2.1)
Rij = Rji, RiyRyj = RpiRyj = 0ij.
Moreover,
Rijaj = —a,, (23)
R;jbj = by, (2.4)

for any vector b perpendicular to a, i.e.
a-b=0. (2.5)
Let b, (o = 2,3) be two unit orthogonal vectors each orthogonal to a:
baibgi = 6, aibai = 0. (2.6)

From now on we refer to the vectors a, b, (o = 2,3) as the new basis. In this
basis the following identity holds:

5ij = a;a; + baibaj~ (2.7)



Let h; be Cartesian components of a vestor h. Then
hi = h(li + Habai (28)

where
h = hiai, Ha = hibai~ (29)

Lemma:
Cijkl = CA;QjARAI+
+ crabaitjara; + c2aa:bajara; + c36,0;a;b0ka1 + C400;050,ba1+
+ diapbaibgjara; + daagbaia;bsrar + dzagbaiajarbg + diapaibajajbsra+
+ dsapaibajarbs + dsasaia;barajbg+
+ Claﬂ’ybaibﬁjb’ykal + CQaﬁvbaibﬁjakbvl + CSa,@’ybaiajbﬁkb'yl + C4aﬁ'yaibajbﬁkb'yl+
+ eozﬁ'yébaibﬁjb'ykb(sl
for any tensor of fourth order.

This representation is unique and follows immediately by making use of (2.8)
for indices 7,7,k and [ of the tensor cjjx;. The expresions for the coefficients
C,Clas - - - €apys May be derived easily from (2.9) and (2.6).

For the elasticity tensor c;;;; we have the following
theorem 3:

Cijkl = €000+
+ ca(baigjara; + a;bajara; + a;a;bara; + a;a;aibar)+
+ Cag(baibgjakal —+ aiajbakbm)+
+ dag(bm'ajbgkal + baiajakbgl + aibajbgkal + aibajakbgl)—&—
+ Cagﬁf(bm‘bgjbwkal + bm‘bgjakbyl + baiajbﬁkrb'yl + aibajb,gkbryﬂ—‘r
+ eaﬁ'yébaibﬂjb’ykbéla (210)

Cap = Cga;  dap = dga;  Capy = Charys 2.11)
Cafys = €pays = Capsy = Cyiap-
Proof: From the Lemma and (1.5) we have
Cla = C2q = C3a = Cia = Ca,
dlaﬁ = dgag = dgaﬁ = dGBa = Cap = CBa;
dgag = dgga = d4a5 = d5ga = dag = dﬁa,

Clapy = C1Bay = C2apy = C2Bav;
C3apy = C3ayB = Capy = ClavB;
ClaBy = C3yaB = CaBy = CRay;

€apys = €Bays = €aBéy = e'yéaﬂ-D



From (2.10) and (2.6) we may write the expressions for all coefficients in (2.10).
For later purpose, we write

Ca = Cijkibaitjaray,

(2.12)
CaBy = Cijkibaibsjbyray.
Now we are ready to prove
theorem 4:
Ca = Cijribaiajaxa; =0 (2.13)
CaBy = Cijkibaibgjbyra; =0 (2.14)

constitute a set of mecessery and sufficient conditions for the vestor a to be the
normal to a plane of symmetry of given elasticities cij.

P r o o f: The conditions are necessary. Indeed, if R belongs to the symmetry
group of the material whose elasticity tensor is c;;r; then one must have

Cijkl = RipquerRlstqrs. (215)

But, from (2.15), (2.16), (2.10), (2.3) and (2.4) at once follows (2.13) and (2.14).
Then we may write
Cijkl = cajajaga; + cap(baibgjarar + a;a;barbsr)+
+ daﬁ(bmajbﬁkal + baia]—akbm + aibajbgkal + aibajakbgl)+
+ €apysbaibsibarbsi. (2.16)

Second, the conditions are sufficient. Indeed, because of (2.13) and (2.14) the
relation (2.16) holds, and from (2.16), (2.3) and (2.4) it follows that

Ripqu Rk:r Rls Cpqrs = Cijkl-

From (2.15) we conclude that R defined by a belongs to the symmetry group.
This means that a, satisfying (2.13) and (2.14), is normal to a plane of symmetry.
O

Since ¢apy = €ga~y the number of conditions (2.13) and (2.14) is eight. In a
case considered by Cowin et al. [1], when

a; = i1,  bai = dai,

we may write
Ca111 =0, Capy1 =0 (2.17)

or, equivalently,

C2111 = C3111 = C2221 = C2321 = C2331 = C3321 = C3331 = 0. (2.18)

Of course (2.18) and (2.17) are identical become of (2.15).



3 Equivalent forms of necessary and sufficient
conditions for a plane symmetry

The conditions (2.13) and (2.14) can be written in equivavelent forms.
I.

1) Cijkl Q0,01 = (CpgrsQplqlnrQs)a; (1.1)
Cz’jk‘lbaibﬁkal = (cpqrsapbaqbgras)ai (3.1)
or
i) Cijikl @0k a1 = (CpgrsQplqQras)a; (1.1)
Cijklajbakbﬁl = (cpqmapaqubgs)ai (32)

are equivalent to (2.13) and (2.14).

Indeed (1.1) may be derived from (2.13) when it is multiplied by e.g. bom, and
(2.7) is used. In the same way (3.1) follows from (2.14) and (2.7) when (2.14) is
multiplied by bam. The same procedure may be applied for a derivation of (3.2).

IT. The conditions (2.13) and (2.14), or equivalenty 4) and i7), may be written

as
141) CijklQjAkA; = (CpgrstplqlrQs)a; (1.1)
Cijklbjbkal = (Cpqrsapbqbras)ai (33)
i) Cijkl @001 = (CpgrsplqQrs)Q; (1.1)
Cijki@ibiby = (Cpgrsapaqbrbs)a; (3.4)

where b is any vector perpendicular to a.
Indeed, for any vector b in the plane defined by vectors b, (o = 2,3) we have

b; = Aabas (3.5)

where for any vector A,are arbitrary. Then multiplying (3.1) and (3.2) with A\, Ag
we arrive at (3.3) and (3.4) respectively.
On the other hand, making use of (3.5) in (3.3) we obtain

Cijk1bajbprai(a,8) = (CpgrsApbagbsras)a;

since A, is arbitrary and Ay Ag is symmetric. Multiplying this by b,; and taking
into account (2.6)2 and (2.12)3 we obtain

Ca(By) =0 Or Capy = —Cayp

i.e. cqpy is symmetric with respect to the last two indices. Since by definition
CaBy is also symmetric in the frst two indices it follows that must be zero. Indeed,

CaBy = CBay = ~CBya = ~CyBa = CyaB = CayB = —Cafy;



i.e. (2.14) holds. Further, (2.13) follows from (1.1) when it is multiplied by b,
and when (2.6); is taking into account. In the same way may prove that (2.13)
and (2.14) follows from (1.1) and (3.4) i.e. iv).

Remark 1. As a consequence of iii) and 4v) it follows that the conditions (1.2)
and (1.3) stated in the theorem 1 are redundant. The conditions (1.2) and (1.3)
are equivalent to the conditions

Cijkl baj bara; = (Cpq'r‘s apbaqbaras)aia

CijklAj barbar = (Cpqrs apGg baor bas)aia

respectively. They may be derived from (1.2) and (1.3) by making use of (1.1) and
(2.7). They are included into conditions (3.3) and (3.4) respectively.

ITI. The conditions (2.13) and (2.14) may be expressed only in terms of a. To
show this we multiply (2.14) by, e.q., bapbggbyr. Then making use of (2.7) and
(1.1) we obtain, after rearranging the indices and the terms,

Cijkl@] — (ijklai + cipklak)apal + QCaiajak =0. (36)

Remark 2. In a case when material is isotropic (3.6) holds for any unit vector a.
Remark 3. The conditions (2.13) and (2.14) are expressed in orthonormal basis
defined by b, (o = 2,3). But they may be expressed in any other basis defined
by two linearly independent vectors, say g, so that

Goi = Rapbai, det(hap) # 0. (3.7

Then
ka = haﬁ% = CijklGail;ara] (38)
kapy = haxhguhyvCanw = Cijrigaigs;gvka (3.9)

are expressed in terms of g, so that insted of (2.13) and (2.14) we may write

ko =0 (3.10)
kapy =0 (3.11)

as a necessary and sufficient conditions for a to be a vector normal to a plane of
symmetry.

4 Special coordinate systems

It is well known ([3], [4], [5]) that there exists a coordinate system in which a
monoclinic solid has only 12 non-zero elastic moduli.

I. The representation of c¢;ji; given by (2.16) enables one to find two such
coordinate systems. From linear algebra [6], it is known that for any real symmetric



matrix there exists a orthogonal system, defined by the eigenvectors of the matrix,
in wich the symmetric matrix is diogonal.
To this ena we write

Cap = Cijkibaibgjaray (4.1)
da,@ = cijklbaiajbgkal. 4.2)

We also make use of the fact that (2.16) holds for any orthonormal basis which
constains a.
In the basis of its eigenvestors c,g has the property that

Co3 — 0 or C2311 — 0 (43)

when we take bnyi = 044, (@ = 2,3) as the eigenvectors of co3. By the same
reasoning we have
d23 =0 or C2131 — 0 (44)

in the basis of eigenvectors of dug.

Of course in each of these coordinate systems (2.13) and (2.14), or equivalently

(1.7), hold. Then in coordinate systems defined by eigenvectors of cog and dag,
one has only 12 non-zero components of c¢;;x;.
Remark 4. It may happen that these two coordinate systems coincide. In that
case both (4.3) and (4.4) would hold simultaneouslt and we would have 11 non-
zero components of c;jr;. To be so it is necessary and sufficient that the matrices
of the elements cop and d,3 commute [6].

II. Up to now we did not make use of the assumption that the strain energy
function W has to be positive definite as a function of strain tensor FEj;;. By
definition

2W = cijulijEr > 0 (4.5)

for any E;; # 0. Since E;; is symmetric it easy to show that
E;; = ea;a; + eq(baiaj + bajai) + eapbaiba; (4.6)
in the orthonormal bases (a,by). Then using (4.6) and (2.16) in (4.5) we obtain
2W = ce? + 2cqpeape + 4daseabs + eapyseaseqs > 0. (4.7
Since (4.7) has to be satisfied for any e, e, and e, it must be that
c>0 (4.8)
and

¢ = dageacs > 0, (4.9)
w = eqpeacg > 0, (4.10)



i.e. ¢ and w are positive definite forms of e, and e,g respectively.
We focus our attention on (4.10). To this ena we use (2.16) and (2.6) and write
€afys = Cijklbmbgjbfykbgl. (4.11)

But from (2.11) we see that e,gys and ¢; ;5 have the same symmetric properties.
Moreover, from (4.5) and (4.10) W and w are positive definite. Then we may
apply Kolodner’s approach [7] to show that there exist at least two distinet unit
vectors w for which

CaBrsNANA s = Ag. (4.12)

To each of them corresponds a unit vector m such that
€aBysNBNANs = Mg (4.13)

Of course n and m are in the plane of symmetry and n- m = 0 since eqgy5n57n is
symmetric. The vector a and the two vectors n, m define two orthogonal bases.
Further, substituting (4.11) into (4.12) we obtain

CijklbaiNijNl = )\na. (4121)

where
N; = naba; (4.14)

represents n in the orthogonal basis defined by b, (o = 2,3). Multiplying (4.12)
by bam and using (4.14) and (2.7) we obtain

Cijki N Ne Nt — (Cmjriam N NpNi)a; = AN;.

But
c?njklanLNij:Nl =0

taking into account that a-n = 0, because of (4.14) and (2.6), and (3.3) holds for
any vector perpendicular to a. Finally we obtain

Cijki N N Ni = AN;. (4.15)

Of course A > 0 in consequence of positivity conditions which ensure the physical
meaning of A and (4.15). Indeed X is related to the square of the magnitude v of
the velocity v of longitudinal wave which propagates in n direction.

In the coordinate system determined by one set of vectors a, n and m from
(4.15) we have that

CijttM;NjNpyNp = 0,  M; = mabai, (4.16)

Without loss of generality we may identify n with b, and m with bg (a # 3).
Moreover, for by; = dqi (o = 2,3), from (4.16) we obtain

Caﬁﬁﬂ = 0, (417)



where we do not sum over indecs 3. Hence for
n= b2 : C3222 = 0 (418)

and for
n= b3 : C2333 — 0. (419)

Then from (1.7), (4.15) and (4.18) or (4.19) we may conclude:

In a plane of symmetry there exist at list two dinstinct directions along which
longitudinal waves will propagate. In the coordinate systems defined by these di-
rections and the direction normal to the plane of symmetry the elasticity tensor
has only 12 non-zero components.

Further, from (4.12) we see that m is an eigenvector of eqgysngn, as well as
of eqapysnyns, i.e. in addition to (4.13) it also satisfies the relations

EaBysMENy T = TMg. (4.20)

Also from
CijklQ; Ak = Ca; (1.1)

we see that a is an eigenvector of c;riajar as well as of ¢;;para;. Both of them
are symmetric but generally different. Then to each of them coressponds its set of
orthonormal vectors, say v, and 4, (o = 2, 3), which are generally different. Nor-
ris [2] investigated only ¢;;ria;ar with eigenvectors a, v, and concluded correctly
that in that basis

C2333 = C1333 = C1323 = 0 (4.21)

under the assumption that a; = d3;, Vai = dai-
But if we investigate

Cijkifhajara = dVa;
we obtain also
C2333 = C1333 = C1223 = 0 (4.22)

when we take a; = 034, flai = 0as- The conditions given by (4.21) and (4.22) gener-
ally differ. Then, having in mind that Kolodner [7] showed that for an anisotropic
elastic body there are at least three directions which satisfy (1.1), we may sum-
marized our results in theorem 5: An elastic solid has at least siz coordinate
systems with respect to which there are only 18 non-zero elastic constants. If the
solid possesses a plane of symmetry four of the coordinate systems have as a com-
mon direction the normal to the symmetry and the solid has 12 non-zero moduli
when referred to these coordinate systems. Moreover, in the plane of symmetry
there are at least two directions along which longitudinal waves will propagate.

This theorem extends Norris’ results stated in his theorem 5:

An elastic solid has at least three coordinate systems with respect to which there
are only 18 non-zero elastic constants. If the solid possesses a plane of symmetry,
three of the coordinate systems have as a common direction the normal to the plane
of symmetry and the solid has 12 non-zero moduli when referred to these systems.



Remark 5: It may happen that two bases defined by a, n and m coincide. In
that course, in addition to (4.15), we will have

Cijkt M My My = v M; (4.23)

i.e. the directions of propagation of longitudinal waves in the plane of symmetry
will be perpendicular to each other. Also (4.17) or (4.18) and (4.19) will hold
simultaneously and in that bases the elasticity tensor will have only 11 non-zero
components.

Remark 6: The condition (4.8) enables one to relate ¢ to the squared speed of
propagation of longitudinal waves in the a direction. Also, from (4.9) we conclude
that dng is positive definite. Then, since dog and c,p are symmetric, there exists a
real nonsingular linear transformation [6], which defines (generally) a nonortogonal
coordinate system in which d,g and c,g are diagonal. Since we consider here only
orthogonal systems we omit further discussion of this possibility.

5 Two orthogonal planes of elastic symmetry

Let us assume that there is an other plane of elastic symmetry orthogonal to the
plane of symmetry defined by the vector a. With no loss in generality one can
take by as its unit normal vector. Then
Sij = (51']' — 2b2ib2j (51)
Sij = Sji,  SikSjk = SkiSkj = 0ij (5.2)
is a symmetric improper orthogonal tensor representing the reflection in the plan
with unit normal bs. Also

Sijaj = ai,  Sijbs; =bgi,  Sijba; = —ba; (5.3)
because of (5.1) and (2.6). Then from the conditions
Cijkl = SipSiqSkrSisCpgrs (5.4)
and (4.1), (4.2), (4.11) and (5.3) we obtain
c23 =0, do3g =0, e2333 =0, ea093=0, (5.5)
or, for a; = 014, bai,
c2311 =0, 2131 =0, 2333 =0, 2203 =0. (5.6)

From (2.13) and (2.14) and (5.5) or (1.7) and (5.6), we see that ¢;;x; has 9 non-zero
components. Also (2.16) reduces to
Cijkl = CQ;Q;Aka+
+ Caa(baibajakal + aiajbakbal)—F (5 7)
+ daa(baiajbak:al + baiajakbal + aibajbakal + aibajakakbal)+ .

+ €apys baibﬁj b'yk b&l



taking into account (5.5).
Obviously (5.7) will not change if a — a, by — by, b3 — —bs. The orthogonal
transformation which has this property if defined by

Tij = 0ij — 2bs;bs;. (5.8)

But then
Cijkl = Tiijquch'lstqrs (59>

and T, defined by (5.8), belongs to the symmetry group of ¢;;x;. Geometrically it
represents the plane of material symmetry defined by its unit normal vector bg.
Since a and b, represent orthonormal vectors we conclude:

If a material has two orthogonal planes of symmetry then the plane orthogonal
to them is also a plane of symmetry. A material with three orthogonal planes
of elastic symmetry has 9 non-zero components of cijri. In a coordinate system
defined by the intersections of the planes of symmetry the zero componants of c;jn
are given by (1.7) and (5.6).

These results are not new. But making use of this conclusion, Remark 4,
Remark 5, we indeed prove
Theorem 6:

A necessary and sufficient condition that a material which possesses a plane
of symmetry has three orthogonal planes of elastic symmetry it that the matrices
cap and dog commute and their eigenvectors define the directions along which
longitudinal waves may propagate.

6 Further characterization of the distinct elastic
symmetries by two or more planes of symmetry

We turn now to the case when there are two, generally, nonorthogonal planes
of symmetry defined by their unit normal vectors a and m. To simplify the
investigation:

First, one can take the coordinate axes x; along the direction of a, and x3
along the direction normal to the plane defined by vector a and m, so that

m; = )\a(saia (Oé =1, 2)
Aara =1, (A1 =cosO, X2 =sin0O).
The unit vector n, orthogonal to m and es, the unit vector along x3 axes, is in
the symmetry plane of m so that

Ha = ega)\g. (6.5)



(Here and further e,g represents a tensor of alternation). In addition to (1.7),
according to (2.13) and (2.14), the following set of conditions must be satisfied

(3

034
Cijkl { 7”? }mjmkml =0 (66)

531'53]'53]@
033031k
03imj 03k
531‘lenk
ninjégk
nin;ing

Cijkl

This set of equations reduces to

Aac3zzz = 0
A2€1213 = A2€1123 = —A2¢2023 = 0
A2(42\2 — 1)cage3 = 0
AoA1(c3311 — €3322) =0
AaA1(c1313 — c2323) = 0
A (273 — Dernnn — (2e1212 + €1122)] = 0
AaA1(cri11 — c2222) = 0. (6.8)

where we have used (6.3). On the bases of these equations we identify the following
cases:

a) Obviously these equations are identically satisfied for Ao = 0. In that case

m = a and there is only one plane of symmetry, the case which was already
discussed. — Monoclinic symmetry.

Further, we will assume that Ay # 0. Then the set of equations (6.8) becomes

c3332 =0
C1213 = C1123 = —C2223 = 0
Ar(ci111 — €2222) =0
A1(c3311 — €3322) =0
A1(c1313 — ca323) = 0
(4X3 — 1)cazo3 = 0
A1 (23 — D[eri11 — (2c1212 + €1122)] = 0. (6.9)
b) Then we have the following cases:
D) A =0
C1213 = C1123 = C2223 = C3332 = 0 (5.6)

and we come to the case which also already was discussed, when there are three
orthogonal planes of symmetry — Rhombic symmetry.



i) Ay # 0.
Then in additional to (6.9)1 2 we have

C1111 = C2222
€3311 = C3322 (6.10)

C1313 = C2323

and

(407 = 1)copas = 0
(A7 = Dernnn — (2¢1212 + c1122)] = 0. (6.11)

ii); A2 =1/2 or © = £m/4 — Tetragonal symmetry

Then (6.9) and (6.10) hold. From (1.7) and (5.6) we see that © = +7/2 define
also a plane of symmetry.

ii)o Af = 1/2 or © = £7/3 — Trigonal symmetry

Then (6.9)1,2 and (6.10) hold and

c1212 = dfracl2(cii11 — c1122)- (6.12)

c¢) For any A\ (or A2) — Transverse isotropy - Hexagonal symmetry

In this case (6.8) are satisfied for any value of A\; and A2 so that the plane
defined by its unit vector e is a plane of isotropy. Moreover, the plane defined by
es, i.e. the plane of isotropy, is also a plane of symmetry. The body is transversely
isotropic. Then, in addition to (1.7), (5.6), (6.10) and (6.12) hold. Particulary, it
also holds for Ay # 0, A\; # 0, 202 —1#0, 4\ — 1 # 0.

For further investigations it is convenient, as is customary in the discussion of
linear anisotropic elasticity, to represent the 21 components of c;;x; by the usual
6 x 6 symmetric matrix notation [9]

Triclinic symmetry (no plane of symmetry)

C1111 C1122 C1133 C1123 Ci1113  Ci112

C2222 (C2233 (2223 (C2213 (2212
C3333 (3323 (3313 (3312 (6.13)

C2323 C2313 (2312

C1313 C1312

C1212

Then making use of here derived results we have the following representations:

Monoclinic symmetry (one plane of symmetry)



C1111  C1122  €1133 C1123
C2222 (2233 (2223

C3333 (3323

C2323

C1313

o O O

0

o O O

0

C1312
C1212

Rhombic or orthotropic symmetry

(Three mutually perpendicular planes of symmetry)

All classes

ciiir ci122 cnzz 0 0
Co222 C2233 0 0
c3z33 0 0

coz23 0

1313

Tetragonal symmetry

Classes 4mm, 4 2m, 4/mm

c1111 €122 c1133 O 0
ciiir crzz 0 0
c3zz3 0 0

caz23 0

C2323

Trigonal symmetry

Classes 32, 3m, Smm

C1111  C1122 C1133 C1123 0
C1111  €1133  —C1123 0
3333 0 0

€2323 0

C2323

Transverse isotropy

Hezagonal symmetry

All classes

OO OO

0

C1212

OO OO

o

C1212

o OO

0

C1123
1/2(c1111 — c1122)

(6.14)

(6.15)

(6.16)

(6.17)



€1111  C1122 C€1133 C1123 0 0
C1111  C1133 0 0 0
C3333 0 O 0

6.18

coz23 0 0 (6.18)
2323 0

1/2(c1111 — c1122)

Second, we turn now to the case when unit vectors a and m are in the plane
x3 = 0, but neither of them are necessarily in the direction of z; axes [1]. Then

a; = 0iala Galq =1 (a1 =cos®, ay =sinO)
by; = 02; b = dinepaap, o, =1,2.
Now the set of conditions of the form (6.6) and (6.7), where n; and m; has to be

replaced by bo; and a;, respectively, must be satisfied for any ©. It then follows
that

C1213 = C1233 = €1333 = C2333 = 0

C1111 = €2222, C1313 = (2323, C1133 = (€2233

C1223 = C1322 = —C1113, C1123 = C1213 = —C2223
C1112 = —C2221 (6.20)
and
€1123 8in 30 + ¢1113 cos 30 = 0, (6.21)
i(cuu — C1122 — 2€1212) SIn 40 — ¢1112 cos 40 = 0. (6.22)

Further, making use of (6.2-7) (with A\; = cos(© + &), Az = sin(O + «), a # 0) we
obtain (6.20) and

C1123 Sin 30 + ¢1113 cos 3(@ + Oé) =0, (623)
1 .
1(01111 — C1122 — 201212) sin 4(@ + Oé) — C1112 COS 4(@ + CY) =0. (624)

These results are the same as (3.21) and (3.22) in [1]. the determinants of sets of
homogeneous equations (6.21) and (6.23), and (6.22) and (6.24) are

sin3a and sinda (6.25)

respectively. Here we have the following cases:
1) o = :|:7T/3 so that C1212 = 1/2(61111 — 01122), C1112 = 0

Trigonal symmetry



Classes 3, 8

C1111  Ci122 C1133 C1123 C1113 0
C1111  €1133 —C1123 —C1113 0
C3333 0 0 0 (6 26)
2323 0 —C1113 '
C2323 C1123
1/2(c1111 — €1122)
i) @« = +7/4, £7/2 so that c1123 = ¢1113 =0
Tetragonal symmetry
Classes 4, 4, 4/mm
€1111  €1122 C€1133 0 0 c1112
€1111  €1133 0 0 —C1112
C3333 0 0 0 (6 27)
co323 0 0 '
2323 0
C1212

These eight distinct elastic symmetry are the only symmetry which we may
derive using the method presented here under the assumption that a material
possesses, at the beginning of investigation one or two planes of symmetry.

Third. We are going to proceed with our investigation in a case when a
material possesses three planes of symmetry. But instead of approaching the
problem in pure algebraic way, we used up to now, we may simplify investigation
making use of the derived results. In fact, we may assume that, in addition to
the symmetric properiety analyzed here, material possesses and additional distinct
plane of symmetry defined by its unit normal vector, say s, but now in a plane
defined by 7 and z3 axes. Then all results, derived here, hold if one interchanges
the indices 2 and 3 in them. In this way we shall investigate case by case.

Obviousely nothing new will come out in a case of Rhombic of orthorombic
symmetry. But in a case of Tetragonal symmetry, (6.16), in addition to (1.7),
(5.6) and (6.10) one will have (from (6.10)):

C1111 = €3333
C2211 = C2233 (6.28)

C1212 = 3232
Then a material will possess

Cubic symmetry
All classes



C1111  C1122  €1133 0 0 0
C1111  C1122 0 0 0
c1111 0 0 0

6.29

2323 0 0 ( )
€2323 0
€2323

The same kind of symmetry one will obtain from Tetragonal symmetry (6.27).
Also from Trigonal symmetries (6.17) and (2.26), Transversal - Hexagonal sym-
metry (6.18) one will obtain

Isotropic symmetry

€1111  C1122  C1133 0 0 0

C1111  C1122 0 0 0

C1111 0 0 0

C1111 — C1122

S E— 0 0 (6.30)

C1111 — C1122 0

2
C1111 — C1122
2

It is simple matter now to show that material cannot possess more than these
ten traditional and distinct elastic material symmetries by planes of symmetry.

7 Conclusion

The method presented here for a determination of planes of symmetry for a lin-
ear anisotropic elastic material is an algebraic one. The necessary and sufficient
conditions for the existence of symmetry planes are given in several equivalent
forms, and are used to determine special coordinate systems where the number of
nonzero components in the elasticity tensor is minimized. It is shown that a ma-
terial cannot possess more than ten traditional and distinct symmetries by planes
of symmetry. The approach is, I believe, a very simple one and may be applied,
generally speaking, for any tensor of any order. In the application we are inter-
ested specifically in those tensors which define physical properties of materials. For
instance, we may show by this method that the second-order tensor properties of
cubic crystals are isotropic, but its elastic properties, given by fourth-order tensor,
are not isotropic. In fact we were dealing only with one part of problem, i.e. we
assume the existence of planes of symmetry. The reverse problem, to find them, if
they exist, was, extensively investigated in [1]. To my knowledge this is the only
algebraical approach which is used.
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O USLOVIMA ZA POSTOJANJE RAVNI
SIMETRIJE U SLUCAJU ANIZOTROPNIH
ELASTICNIH MATERIJALA

Rezime: U radu se razmatra problem odredivanja potrebnih i dovoljnih uslova za
postojanje ravni simetrije anizotropnog elasticnog materijala. Ovi uslovi su dati u
nekoliko ekvivalentnih formi i koriséeni su za odredivanje specijalnih koordinatnih
sistema gde je broj komponenti razlicitih od nule u elasticnom tenzoru minimiziran. Na
osnovu datog modela pokazano je da elasticno telo ima barem Sest koordinatnih sistema
u odnosu na koje postoji samo 18 elasticnih komponenti razlicitih od nule i ono ne moze
da ima vise od deset klasicnih i jedinstvenih simetrija po ravnima ravnima simetrije.



MODIFIKACIJE GEOCENTRICNE KONSTANTE
GRAVITACIJE

Veljko Vujigi¢' UDK:531.5

Rezime: Popravljena je formula i brojna vrednost konstante Zemljine gravitacije,
poznate pod nazivom Geocentricna konstanta gravitacije. Prethodno je ukazano na
nesaglasje o pitanju Univeralne konstante gravitacije: posle modifikacije geocentricne
konstante gravitacije popravijene su i konstante glavnih planeta i Meseca.

Kljuéne redi: gravitacione konstante, geocentricna konstanta, sile gravitacije,
modifikacija.

1. FORMULA UNIVERZALNE KONSTANTE GRAVITACIJE

U postnjutnovskom periodu njegova VIII teorema knjige O SISTEMU SVETA o
uzajamnom privlacenju dve homogene kugle, i teorema I, II, III o kretnju Jupiterovih
satelita, kretanju glavnih planeta oko Sunca, kao i o zadrzavanju Meseca na orbiti oko
Zemlje, uobli¢ene su pod nazivom Njutnov zakon gravitacije formulom

_mm, Q)

F= f2%
o,

gde je f~ univerzalna konstanta gravitacije, a p medusobno rastojanje materijalnih tacaka,

masa m; 1 m,.

Brojna vrednost konstante f nije precizno tabulisana. Odredivana je eksperimentalno i
radunski, ali je najéeiée upotrebljavaju kao dimenzioni broj 6,27-10"" kg' m’ s?.
Medutim, kako je formula (1) izvedena na osnovu Keplerovih zakona, bilo je moguce
odrediti navedenu konstantu formulom

re 47’ @
M +m)T?

gde je M masa Sunca, a m masa planete. Ali po toj formuli je ocigledno da je f funkcija
mase planete, tj. da je razlicita za razne planete. To postaje sasvim jasno ako se zapazi da
je

! Profesor dr Veljko Vujic¢i¢, akademik ANN, Matematicki institut SANU, Knez Mihailova 35, Beograd,
e-mail: vvujicic@mi.sanu.ac.yu



ir’d’ Q)
= T

konstantna veli¢ina i ne zavisi od masa planeta, s obzirom da koli¢nik

3 4
% =k = const.

prema tre¢em Keplerovom zakonu, ima jednu te istu vrednost za sve planete Suncevog
sistema. Prema tome, formula (2) moze se napisati u obliku

gl M Mm (5)
M+m p°

Suocavajuci se sa teSkocama, pri§lo se zanemarivanju masa planeta u odnosu na daleko
veéu masu Sunca, pa je formula (2) svedena na

. u 4rd’ (©)
TR

gde se sada podrazumeva da je (iako to nije) masa Sunca M u koeficijentu
proporcionalnosti f konstanta, pa jei f " Kkonstanta. Medutim, sledeéi ra¢un (Vidi, na

primer [3]), pokazuje da ni to ne dovodi do strogog zakljucka da univerzalna
gravitaciona konstanta ima jednu te istu brojnu vrednost. Ne mali broj autora, visokih
ucenih znanja i zvanja i uglednih imena, uporeduju Njutnovu silu gravitacije (1) sa silom
Zemljine teSe mg, te nalaze medusobnu zavisnost izmedu ubrzanja g i konstante
gravitacije f. To ¢e re¢i, da formulu (1) proSiruju ne samo na planetarni sistem, nego i

2

na bilo koja dva tela. Evo kako to izgleda prema [1]. Sila F= f " kojom
Zemlja mase M, privlaci neku materijalnu tacku mase m na povrsini Zemlje, jednaka je
tezini mg , pri Cemu je g=9,78 ms?do 9,83 ms?. Kako je, prema tome,

. M_m (7

f L

sledi da je gravitacionu konstantu f ' moguce taéno odrediti onoliko, koliko su tacne
vrednosti za polupre¢nik i masu Zemlje; neka je to 6,67-10"" kg m® s%. Medutim, u
struénoj literaturi (vidi na primer [2]) o kretanju vestackih satelita, koriste se znanto
drugacije vrednosti konstanata gravitacije. Zaista, ako striktno primenimo formule

©)1(5)



M. m ®)

dobija se
p=3,9860 m’s?x10"

a to je znatno, skoro dva puta, manje od brojne vrednosti Siroko usvojene univerzalne
gravitacione konstanate. Da bi se otklonila ta nesaglasnost, u nebeskoj mehanici se
uvode takozvane karakteristicne konstante gravitacije, [1] koje se definiSu slede¢im
formulama:

A= f'm,. ©

Da bi se to dovelo u razuman algebarski sklad sa formulama (3) ili (4), to bi znadilo:
uzme li se za masu m; masa M tela u odnosu na koje se posmatra kretanje materijalne
tacke mase m,=m, formula sile privlacenja (1) se zapisuje u sledecem obliku

(10)

*

F =% )
(1+ﬁ)/02

z

m
F.

Ako se m; uzme za masu Zemlje M. isila gravitacije F izjednadi sa silom teze dobija se

. m . an
A ?:mg — 1 =gR’.

To znatno uprostava odredivanje konstante, ali samo pribliznom ta¢no$¢u za izabrane
brojne vrednosti g i R, jer se zna da i jedna i druga vleiCina zavise od geometrijskih i
kinematickih parametara. Da bi formulu sile (10), kojom Zemlja privlaci satelit, kao
materijalnu tacku, doveli u sklad sa izvedenom formulom (2) i izveli formulu
geocentricne konstante gravitacije postupimo u daljem kao $to to sledi.

2.  GEOCENTRICNA SILA GRAVITACIJE

Pod ovim podnaslovom podrazumevamo silu (1) uzajamnog dejstva bilo koje dve
materijalne tacke, u kojoj je m; = M, masa Zemlje, a m masa satelita, kao materijalna
tacka koja se kre¢e oko Zemlje po Keplerovim zakonima. U tom Zemljinom slucaju
formula (1) se konkretizuje kao



(12)

23
4 a M.m _ [ M. )ﬂ:GEm GEﬁ,u 1

TM_+mT o M. +m)p’ Ja
MZ
Dalje se moze pisati:
13
iEGE:lU;m:ﬂg ( )
I+—
MZ
gde je
M (14)
M +m JL
M

Ako, na primer, materijalna tacka ima masu od jednog kilograma onda je

GE = p- 0,999999
jer je

I+ ML =1,0000000000000000000000000001 . Dakle, po Zzelji visokom

z
taéno$¢éu moguce je odrediti faktor proporcionalnosti GE. Ali bez obzira na malenkost
koli¢nika ne moZe se konstatovati da konstanta gravitacije Zemlje GE ima jednu te istu
brojnu vrednost. To se lako zakljuCuje ako se umesto mase m=/ uzme u obzir masa
najveceg satelita — Meseca, Gija je masa my, = 0,0123 M. ; srednje rastojanje a=3,84-10°
m’

€=0.987849, 1 =4,013534-10" (15)
pa je geocentricna konstanta gravitacije za Mesec
GE =3,96476590-10" m’s™ .
Jos jasnije se pokazuje da se geocentricna konstanta gravitacije razlikuje, istina veoma

malo, od objekta do objekta, kao i od standardne njene usvojene brojne vrednosti
GE = GF=3,986005-10" m’s™ , u primeni na vestacke satelite Zemlje.



Primenjeno na 12 vestackih satelita Kosmos-N, ¢ije su brojne vrednosti apogrja, perigrja
i vreme obilazenja Zemlje dati u knjizi “Astronomija i kosmonautika” od S.I.
Selesnikova (1967), za geocentri¢unu konstantu gravitacije dobijaju se slede¢i podaci:

Vestacki satelit | Godina izbacanja Geocentriéna gllg)allzlrtgc;ona konstanta
Kosmos-1 1962 4.008933
Kosmos-11 1962 4.005365
Kosmos-21 1963 4.008515
Kosmos-31 1964 4.012660
Kosmos-41 1964 3.993121
Kosmos-51 1964 4.007137
Kosmos-61 1965 4.008320
Kosmos-71 1965 3.997788
Kosmos-81 1965 3.943948
Kosmos-91 1965 4.008447
Kosmos-101 1966 4.014837
Kosmos-127 1966 4.399788
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MODIFICATIONS OF GEOCENTRIC GRAVITY
CONSTANT

Summary: Expression and numerical value of Earth gravity constant, otherwise known
as Geocentric gravity constant, has been corrected. Prior to that, conflicting issues
regarding Universal gravity constant have been emphasized,; after modifications of
Geocentric gravity constant corrections have been made to constants of major planets
and the Moon.

Key words: gravity constants, Geocentric constant, Gravity force, modification
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