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Summary: In 1807, Thomas Young published an article dealing with different structural
forms of false arches. One of considered problems was the stability of two inclined plate-
bandes leaning against each other. In the present paper, after a geometric formulation
within equilibrium (static) approach, the problem is analytically treated, and the closed-
form expression of thrust line is derived. In addition, limit equilibrium state is analysed,
and minimum thickness to length ratio as the function of the inclination angle is
determined. Accordingly, Young’s solution turns out to be incorrect, since instead of 15,
even 20 bricks are stable within the plate-bande inclined at 60 degrees.

Keywords: thrust line, inclined plate-bande, limit equilibrium analysis, Thomas Young

1. INTRODUCTION

In 1807, Thomas Young, under a pseudonym [1], published an article [2] dealing with
different structural forms of false arches. One of considered problems was related to two
inclined brick plate-bandes (straight arches) leaning against each other, and the maximum
number of bricks that are thereby stable. After derived geometrical construction, which
appears to be incorrect [1], Young concluded that “if the aperture be equilateral, 15
common bricks on each side will stand, but 16 will give way at the sixth joint from the
summit” [2, p. 247], as shown in Fig. la. Barlow [3] analysed the same problem, but
provided only the numerical result for the inclination of 45°.

He concluded that “thickness must be 0,1464 of the length” and that critical joint appears
at the distance being equal to “0,3535 of the length, from the upper extremity”;
furthermore, he noticed that this thickness is sufficient for any other inclination [3, pp.
165-166]. Recently, Huerta discussed Young’s result and concluded that “the difference
between Young’s solution and the correct solution is small”, and that “exact calculation,
resolving transcendental equation to obtain the limit thickness, gives very nearly a
proportion of 1/6 and the position of the joint of rupture at circa 1/4 of the length from the
top” [1, p. 417].

In 1730, Couplet [4] tried to determine the minimum thickness of a semicircular arch of
uniform thickness under self-weight, which is today known as Couplet’s problem. In 1904,
on the base of thrust line i.e. limit equilibrium analysis, Milankovitch [5] provided the
correct solution, and recently, the same approach was applied to the elliptical [6] and
pointed arches [7]. Albeit the geometry of inclined straight arch (or two inclined plate-
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bandes leaning against each other) is very simple, precise mathematical elaboration of this
apparently simple problem is not provided. Thus, the aim of this paper is to apply
geometrical formulation (static approach) of limit equilibrium analysis, i.e. derivation of
limit thrust line, and thus once again to reassess the previous results.
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Figure 1. Two inclined plate-bandes leaning against each other:
(a) Young’s solution for a=60°, (b) Barlow’s solution for a=45°

2. ANALYTICAL MODELLING

Analytical modelling of the problem is based on thrust line analysis, where thrust line
represents the locus of the application points of the resultant thrust forces at the joints
between the voussoirs of a structure.

Therewith, common assumptions about masonry properties are adopted: no tension
strength, infinite compression strength and sliding cannot occur. Thus, the possibility of
failure due to material strength or due to sliding is eliminated, permitting only the collapse
due to instability, by relative rotation of structure’s parts around the edge of the joint of
rupture. Accordingly, if a structure is of sufficient thickness, and a thrust line is lying
everywhere within the structure’s boundary (between intrados and extrados), the structure
is safe [8].

Consider now two plate-bandes of the length I, thickness t and half-span s, leaning against
each other at the angle a, as shown in Fig. 2d. Their common point B and two points of
support define unique thrust line.

Due to the symmetry, in the following analysis only half-arch is considered. The horizontal
thrust H is the only one that can be transmitted at the crown; on the other side, there is
inclined reaction force R acting at the point of support S, as shown in Fig. 2a. Weight W,
represented by the area of plate-bande, is acting at the corresponding centre of gravity.
The force polygon shown in Fig. 2b graphically expresses the equilibrium of the system.
The origin of the Cartesian coordinate system is set at the point B, and the abscissa is set
along intrados, as shown in Fig. 2a,c. Since inclined plate-bande can break along the
direction of joint between bricks which is perpendicular to the intrados and extrados,
normal stereotomy is employed.

Hence, the distance x is measured along the abscissa and defines the generic section which
is parallel to the ordinate.

| 360PHVK PAOIOBA MEBYHAPOAHE KOH®EPEHLIMJE (2017) |



5 INTERNATIONAL CONFERENCE
Contemporary achievements in civil engineering 21. April 2017. Subotica, SERBIA

Figure 2. Inclined plate-bande: (a) geometric parameters, (b) force polygon, (c) free-
body diagram of the isolated finite top portion up to the generic section, (d) two inclined
plate-bandes leaning against each other

Rotational equilibrium about the point S is expressed by the following equality:

Hisin a1+ Wsiner 1 /2=Weosa 1/2 @)

whereas W = | t is the weight of the inclined plate-bande, and | = s seca. Thus, one can
derive the value of horizontal thrust:

_t(s—tsina)
2sin o

H )

One can conclude that H equals zero for t = s csca, when the vertical line of action of the
weight W passes through the point S. Consider now the finite portion up to the generic
section at the distance x, shown in Fig. 2c. Its weight V = x t is represented by the
corresponding area and is applied at its centroid. The resultant thrust force T at a generic
section at the distance x together with its point of application A is uniquely determined
from the force and moment equilibrium of the finite portion of the arch; it can be done
either graphically with the force polygon (Fig. 2b,c), or analytically by solving equilibrium
equations. Accordingly, from rotational equilibrium about point A follows:

H xsin o —H ysin a =V sin a(y—;)+;v XCOs & (3)

whereas the horizontal thrust H, given by Eq. (2), and the weight V are decomposed to the
normal (abscissa) and shear (ordinate) direction. Finally, from the previous equality, one
can determine the distance y between the thrust line and the intrados, deriving the closed-
form expression for the thrust line within inclined plate-bande:
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x?cosa — SX
- 4
tcosa — 2xsin o —scota

y(x) =

Critical point, referring to joint (generic section) where the thrust line approaches closest
to the extrados, is determined according to the maximum of Eq. (4) (for the brace of the
hyperbola which corresponds to the existing, real, part of the thrust line; see Fig. 5b); thus,
derivative of Eq. (4) is:

cot a(s —tsin af(s — 2xcosar ) — 2x* sin arcos a
(2xsin & +scota —tcosa )’

y' ()= Q)

and from y'(x) = 0, the positive value x, being the abscissa of the critical point, is solved:

Xori =;{cot alt—scsca)+ csca\/sin a(scsca —t) (scot2a+25—tc03acota)} (6)

Substitution of Eq. (6) into Eq. (4) gives the ordinate of the critical point, representing the
greatest distance between the intrados and the thrust line:

ycm:i{Zscs&a—ZcotaCSCa [tc05a+\/sin a(scsca —t) (scot2a+25—t005acota):l} (g

Equalization of Eq. (7) with the thickness t, resolving for t and the division by s gives the
minimum thickness to span ratio as the function of the inclination angle:

tls, (a)= ;tan(gj @)

Furthermore, the ratio between the thickness t and the length I of the inclined plate-bande
is:

t/l,, () =;tan[02[jc03a 9)

The inclined plate-bande of this proportion is of minimum thickness, i.e. it is on the point
of collapse (limit equilibrium state), and can accommodate only one admissible (limit)
thrust line (see Fig. 5d). One can see that this value depends only on the value of the
inclination angle a. Furthermore, when the minimum thickness is assumed, the abscissa
Xerit OF the critical point, given by Eq. (6), is simplified to:

1 1
Xcrit(tmin) :ESZEICOS(Z (10)

This enables simple determination of the position of the joint of rupture.
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3. RESULTS AND DISCUSSION

Equations derived in the previous section refer to inclined plate-bandes made of bricks of
infinitesimal thickness. Numerical values for theoretical minimum thickness for the
various values of the inclination angle o are calculated according to Egs. (8) and (9) and
are given in Table 1. In addition, the correlation between minimum thickness to span ratio
or (t/s) minimum thickness to length ratio (t/l) and the inclination angle a is traced in the
graph presented in Fig. 3a.
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Figure 3. (&) Graph showing minimum thickness to span t/s and thickness to length t/l
ratio for various inclination angles, (b) maximum number of bricks within plate-bande

On the other hand, when the bricks of finite thickness are considered, the maximum
number of bricks, laid one above other within the plate-bande that will be stable, depends
on their proportions. Thickness to length ratio (t/1) of a plate-bande can be expressed as
follows:

11)

whereas n is the number of bricks of thickness a, and A represents the length to thickness
ratio (t/a) of the brick. Since t/lI must be greater than t/lmin, given by Eg. (9), the maximum
number of bricks of proportion A, is given by:

t/Imin (a)
In his article, Young does not explicitly specify the dimensions of the “common brick”
that he used in his analysis (in further text: Young’s brick). However, relating to his Fig.
18 [2, plate VIII], redrawn here in Fig. 3a, the following is stated: “...an equilateral
aperture, constructed of 8 common bricks on each side, and without cement of any kind,
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CD will be 9.3 inches, DE 2.7, and FG 21...” [2, p. 247]. Accordingly, one can conclude
that brick’s thickness equals 3 (21 divided by 7), and the following equalities can be set:
21c0s60 —tcos30 = 2,7 (13q)

tcos30 +3cos60 = 9,3 (13b)

From any of the equations, one can easily deduce the length t of the Young’s bricks (that
is the thickness of the inclined plate-bande), which equals 9. Hence, the thickness to length
ratio of Young’s brick is 3/9, rather than 3/8,75 as incorrectly deduced by Huerta [1, p.
417] (however, this difference (8,75 or 9) does not affect the final result).

ﬁ% *T 2,74 (a) (b)
P /)

A

Figure 4. (a) Proportions of Young’s bricks (redrawn from [2]), (b) collapse of two
inclined plate-bande leaning against each other, each made of 21 bricks

As mentioned in the Introduction, Young stated that, in the case when a=60°, 16 bricks
will collapse at the sixth joint from the top. That implies thickness to length ratio of
inclined plate-bande between 9/45 and 9/48, i.e. 0,2 < t/l < 0,1875, and the rupture occurs
at 6/16 of the length from the top. However, the correct solution for the minimum
thickness, according to Eq. (9), is t/lmin=0,14434. Therefore, with respect to Eq. (12), one
can conclude that even 20 bricks of such proportion would still stand (t/1=3/20=0,15), and
that 21 bricks would collapse (t/1=3/21=0,1429). In addition, Huerta’s comment that
“exact calculation...gives very nearly the proportion of 1/6”, which is 3/18~0,1667, turns
out to be incorrect (although Huerta’s Fig. 15 [1, p. 417] appears very close to the correct).
On the other hand, with respect to Eq. (10), when the minimum thickness is assumed,
critical joint is at 1/4 of the length from the top. However, when the bricks of given
proportions are considered, Huerta’s note that “the position of the joint of rupture [is at]
circa 1/4 of the length from the top” is correct, since plate-bande breaks around the fifth
brick, i.e. the thrust line cuts the extrados at the fifth and the sixth joint from the top, as
shown in Fig. 4b.

As regards the inclination angle a=45°, the thickness to length ratio (t/1=0,14645) and the
position of the joint of rupture (Xcix=0,35355 1), given by Eqgs. (9) and (10), respectively,
are in accordance with the Barlow’s solution. However, his remark that “whether the
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inclination was greater or less than 45°, the curve [thrust line] fell within the thickness”
turns out to be incorrect (see Table 1 and the graph shown in Fig. 3a). Namely, the
derivative of Eq. (9) is:

t/,, (a) =;[cosa - (14)

1+cosa}

Equalizing Eq. (14) with zero, gives the maximum of Eq. (9), representing the value of
the inclination angle o which requires theoretically the greatest value of minimum
thickness to length (t/1) ratio:

V5-1
2

e (U1 40) = arccos( J ~51,8° (15)

Maximum number of Young’s bricks within inclined plate-bande that is stable, for various
values of inclination angle a, is provided in Table 1. Therewith, the values regarding bricks
commonly used in Serbia, with length to thickness ratio 25/6,5, are given as well. This is
also graphically presented in Fig. 3b.

On the base of Egs. (9) and (10), one can derive very simple geometrical construction,
presented in Fig. 5a, for the detection of minimum thickness for a given intrados. The
procedure is as follows: (I) bisect the given inclination angle (straight line AD); (1) the
half of the obtained straight line segment CD represents the minimum thickness value.

.
Figure 5. (a) Geometrical construction for the determination of minimum thickness and

the position of critical joint, (b) hyperbolic thrust line (c), cusp of the thrust line at the
crown, (d) inclined plate-bande of minimum thickness
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Table 1. Minimum thickness to span (t/s) and thickness to length (t/1) ratio, as well as the
maximum number of bricks within inclined plate-bande for various inclination angles

a[°] 15 22,5 30 35 40 45 50 55 60 67,5 75
t/s 0,0658 0,0995 0,1340 0,1576 0,1820 0,2071 0,2332 0,2603 0,2888 0,3341 0,3837
t/l 0,0636 0,0919 0,1160 0,1291 0,1394 0,1464 0,1499 0,1493 0,1443 0,1279 0,0993

Young’s bricks 47 32 25 23 21 20 20 20 20 23 30
Serbian bricks 60 41 33 29 27 26 25 25 26 30 38

At the end, several properties of thrust line regarding its shape are considered. The
expression of the thrust line, given in Eq. (4), is rational function which represents
hyperbola (see Fig. 5b). Since the degree of the numerator is one degree greater than the
denominator, the graph has oblique asymptote; the division of these two polynomials,
ignoring the remainder, gives its expression:

1

Sina

y(x) :—%xcota+ 2 [s(2+cot2a)—tcosacota] (16)

In order to determine the asymptote being parallel to the ordinate, the denominator is
equalized to zero, and the value x is solved:

tcosa —scota
T Ssing (17)
Huerta noted the “discontinuity of the curvature of the line of thrust” at the common point
B between two plate-bandes [1, p. 247]. With respect to the adopted coordinate system,
the tangent of horizontal line through the point B equals tana. In order to determine the
direction of the tangent line to the thrust line at the point B, the value x in Eq. (5) is
substituted by zero. Hence the inclination of the tangent line is given by:

stan_ a (18)
s—tsina
The value tsina is smaller than s, so s/(s-tsina) is always greater than one. Therefore, the
ratio given by Eq. (18) is greater than tana, so that the tangent at the crown is inclined
rather than horizontal, and the thrust line goes slightly upwards from the point B, as shown
in Fig. 5b. Hence, the thrust line as a whole, within the both sides of the structure, has the
cusp at their common point, as one can see in Fig. 5c. Since the horizontal thrust is the
only one acting at the crown, this might appear somewhat unnatural, but it can be attributed
to the part (weight) of the structure that is above the crown.
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4. CONCLUSION

Thrust line theory enables the exact examination of the stability of two inclined brick
plate-bandes leaning against each other. This apparently simple problem, regarding the
determination of the maximum number of bricks laid each on other and inclined at some
angle, has not been solved until now. Analytical expressions of thrust line, representing a
hyperbola, as well as the expression for the minimum thickness to length ratio are derived.
Accordingly, it has been shown that Young’s solution turns out to be incorrect, since even
20 rather than 15 bricks, inclined at the angle of 60°, would stand. Conducted analysis can
be used as the base for the analyses of similar types of triangular and false arches.
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BEJIEHIIKA O AHAJIM3U PABHOTEXE
HATI'HYTOI ITPABOTI JIYKA

Pezume: Tomac Jane je 1807. 200une 06jasuo uianax o pasiuyumum KOHCMPYKYUjCKum
00NUYUMA TAACHUX TTYKOBA. JedaH 00 pasmampanux npobiema ouna je cmaduiHocm 08ajy
npasux JyKoea 00 oneKke HASHYMux jeoan Ha oOpyeu. Y oeom pady je, npumenom
2e0Mempujcko2 NPUCMYna y CMamuykoM UCRUMUBAILY, 06aj npobiem aHATUMUYKU
obpalen, me je usgeoen u3pas 3a NOMNOPHY JTUHUJY. Y3 MO je UCRUMAHO SPAHUYHO CIMATbEe
pasrnomedice, me je oopelieH MUHUMATHU 0OHOC Oeb/buHe U OVIHCUHe V (PYHKYUju HaeubHo2
yena. V cknady ¢ mum, ucnocmasma ce 0a je Janeogo peuierbe Hemauro, 6yoyhu oa je,
YMecmo nemnaecm, 4ax 0gadecem oneka CmabuiHo y npagoM YKy HASHYMOM HOO YeIoM
00 we3zdecem cmenexu.

Kuyune peuu: nomnopna nunuja, naznymu npasu 1yk, cmamuika ananusa, Tomac Jane

| 360PHVK PAOIOBA MEBYHAPOAHE KOH®EPEHLIMJE (2017) |



