SEISMIC ANALYSIS OF A STEEL TANK FOR LIQUID STORAGE, BY EUROCODE 8

СЕИЗМИЧКА АНАЛИЗА ЧЕЛИЧНОГ РЕЗЕРВОАРА ЗА СКЛАДИШТЕЊЕ ТЕЧНОСТИ ПРЕМА ЕВРОКОДУ 8

Darko Gajić¹ Nemanja Bralović² Aleksandar Prokić³ Đorđe Lađinović⁴

Summary: This paper is shows the results of the simplified analysis for the overall seismic response (basic shear force and momentum) for steel storage tank with different aeometric characteristics and for different types of soil. Acceleration of soil is 0,4g. The tank's purpose is to store liquids such as sulfuric acid and water. The calculation has been done according to the regulation of Eurocode 8 and below is presented the analysis of obtained results.

Keywords: Eurocode, steel storage tank, water, sulfuric acid, seismic

1. INTRODUCTION

In industrial facilities such as petroleum and wastewater facilities, liquid storage tanks are very common. It is very important to satisfy the seismic demand of those constructions because of collapse which is often followed by major consequences. During the seismic activity, forces of inertia are induced by the acceleration of the structure of the UDK:624.014.2.953 DOI: 10.14415/zbornikGFS35.01 CC-BY-SA 4.0 license

Резиме: У раду су приказни резултати поједностаљене анализе за укупан сеизмички одговор (основна сила смицања и моменти превртања) челичног резервоар за складиштење различите врсте течности (сумпорна киселина, вода) са различитим геометријским карактеристикама и за различите типове тла, а при убрзању тла од 0,4g. Прорачун је спроведен у складу са одредбама Еврокода 8 и приказана је анализа добијених резултата.

Кључне речи: Еврокод, челични резервоар, вода, сумпорна киселина, сеизмика

1. УВОД

У индустријским постројењима, као што су постројења за обраду нафте или отпадних вода, резервоари за складиштење течности на земљи су врло чести. Задовољавајући сеизмички одзив таквих објеката је од пресудног значаја јер колапс обично резултира тешким последицама.

¹ Darko Gajić, PhD student, University of Novi Sad, Faculty of Civil Engineering Subotica, Kozaračka 2a, Subotica, Serbia, tel: +381 24 554 300, e – mail: <u>darko.gajic24@gmail.com</u>

² Nemanja Bralović, PhD student, Assistant, University of Novi Sad, Faculty of Civil Engineering Subotica, Kozaračka 2a, Subotica, Serbia, tel: +381 24 554 300, e – mail: <u>nemanjabralovic@hotmail.com</u>

 ³ Prof. dr Aleksandar Prokić, dipl. inž. građ., University of Novi Sad, Faculty of Civil Engineering Subotica, Kozaračka 2a, Subotica, Serbia, tel: +381 24 554 300, e – mail: <u>aprokic@eunet.rs</u>
 ⁴ Prof. dr Đorđe Lađinović, dipl. inž. građ., University of Novi Sad, e – mail: <u>djordje.ladjinovic@gmail.com</u>

tank and the hydrodynamic force caused by liquid acceleration. Liquid mass in the bottom part of the tank behaves like a hard mass attached to the wall of the tank and it is called impulse liquid mass. This, impulse liquid mass accelerates along with the tank wall and it induces impulse hydrodynamic pressure. The liquid mass in the upper part of the tank is subject to the fluid movement and is called a convective liquid mass and it induces convective hydrodynamic pressure.

The analysis was performed on a steel tank, for different filling levels with variable ratio of liquid height and tank radius (H / R). The tank is an overhead cylindrical structure made up of curved sheets 5 cm thick. Different types of soil were considered in the analysis at the same soil acceleration.

2. DYNAMIC MODEL

The behavior of the reservoirfluid system exposed to seismic activity can be assessed using various powerful software tools. However, the overall seismic response (basic shear force and overturning moments) can also be properly evaluated using some of the simplified dynamic models. Only the first vibration modes must be taken into account in the analysis. In the case of steel tanks, the wall can be considered flexible, and in the case of concrete tanks, the wall is considered rigid. In this paper, attention will be focused on steel tanks. In dynamic model shown in Figure 1.: m_i and m_c signify the impulse or convective masses of liquids, h_i signifies the height where the resultant of the impulse pressure, h_c signifies the height at which the convective pressure is the result, , h'_c indicates the height at which the resultant convective pressure on the wall and base is found. The inner radius of the tank is marked with R, the fluid height with H, and all heights are measured from the bottom of the tank wall. The parameters of the dynamic model depend on the geometry of the

Током сеизмичког деловања, инерцијалне силе су индуциране услед убрзања структуре резервоара и силе, изазване хидродинамичке убрзањем течности. Течна маса у доњем делу резервоара понаша се као маса која је чврсто повезана са зидом резервоара и назива се импулсна течна маса. Она убрзава заједно са зидом резервоара и индукује импулсни хидродинамички притисак. Течна маса у горњем делу резервоара подлеже кретању течности и назива се конвективна течна маса и она индукује конвективни хидродинамички притисак. Анализа је спроведена на челичном резервоару, за различите нивое пуњења са променљивим односом висине течности и радијуса резервоара (H/R). Резервоар је надземна цилиндрична конструкција сачињена од закривљених лимова дебљине 5 ст. У анализи су расматрани различити типови тла при истом убрзању тла.

2. ДИНАМИЧКИ МОДЕЛ

Понашање система резервоартечност изложеног сеизмичком деловању може се проценити помоћу различитих моћних софтверских алата. Ипак, укупни сеизмички одговор (основна сила смицања и моменти превртања) се такође могу правилно проценити кориштењем неких од поједностављених динамичких модела. У случају челичних резервоара зид се може сматрати флексибилним, а у случају бетонских резервоара, зид се сматра крутим. У овом раду пажња ће бити усмерена на челичне резервоаре. У динамичком моделу приказаном на слици 1.: *m_i* і *m_c* означавају импулсне односно конвективне масе течности, а h_i означава висину где је резултанта импулсног притиска, h_c означава висину на којој је резу-лтанта конвективног притиска, h' означава висину на којој се налази резултанта

tank. In addition to the already defined sizes, the coefficients C_i and C_c related to the natural periods of impulse and convective vibration modes appear as dynamic model parameters.

конвективног притиска на зид и базу. Унутрашњи радијус резе-рвоара је означен као R, висина течности са H, а све висине се мере од дна зида резервоара. Параметри динамичког модела зависе од геометрије резервоара. Поред већ дефинисаних величина, као пара-метри динамичког модела појављују се и коефицијенти C_i i C_c , који се односе на природне периоде импулсних и конвективних модова вибрација.

Импулсивни природни период вибрација:

EN 1998-4 Annex A 3.2.2 (A.35) (1)

Конвективни период вибрација:

EN 1998-4 Annex A 3.2.2 (A.36) (2)

Слика 1 – Конвективни и импулсивни део масе Figure 1 – Convective and impulsive part of the mass

Impulsive natural vibration period :

$$T_{imp} = C_i \cdot \frac{H \cdot \sqrt{\rho}}{\sqrt{\frac{s}{R}} \cdot \sqrt{E}}$$

Convective vibration period:

$$T_{con} = C_c \cdot \sqrt{R}$$

Слика 2 – Конвективни и импулсивни koeficijent $C_c\,i\,C_i$ Figure 2 – Convective and impulsive soefficients $C_c\,and\,C_i$

Liquid level in the tank / Ниво течности у резервоару:	Н
Unit weight of liquid / Запреминска тежина течности:	Υ
Tank radius / Радијус резервоара:	R
Modulus of elasticity / Модул еластичности:	$E = 21000 kN / cm^2$
The density of the liquid in the tank /	
Густина течности у резервоару:	ρ
The average wall thickness of the tank /	
Средња дебљина зида резервоара:	s = 0,05 m
Water mass in the tank / Маса течности у резервоару:	m
Non-dimensional coefficient / Бездимензионални коефицијент C_i	

соеfficient C_c expressed in $s / m^{0.5} /$ Коефицијент C_c изражен у $s / m^{0.5}$

Total shear force

- $Q = (m_i + m_w + m_r) \cdot S_e(T_{imp}) + m_c \cdot S_e(T_{con})$ Where is:
 - m_r represent the mass of the tank roof m_w stands for the mass of tank wall
 - $S_{e}\left(T_{imp}\right)$ Impulse spectral acceleration
 - $S_{e}\left(T_{con}
 ight)$ convective spectral acceleration

Overturning momentum above the foundation slab

Укупна сила смицања

EN 1998-4 Annex A (3)

Где је:

- *m*_r маса крова резервоара,
- *m*_w- маса зидова резервоа

 $S_{e}(T_{imp})$ - Импулсно спектрално убрзање,

 $S_{e}(T_{con})$ - конвективно спектрално убрзање

Момент превртања изнад темељне плоче

$$\begin{split} M = & \begin{pmatrix} m_i \cdot h_i + m_w \cdot h_w + m_r \cdot h_r \end{pmatrix} \cdot S_e \begin{pmatrix} T_{imp} \end{pmatrix} + m_c \cdot h_c \cdot S_e \begin{pmatrix} T_{con} \end{pmatrix} \text{EN 1998-4 Annex A (4)} \\ & \text{Where is:} & & \Gamma_{\text{де je:}} \\ & h_r - \text{ brunt roof height of the tank,} & & h_r - & \text{тежишна висина крова} \\ & h_w - \text{ brunt wall height of the tank} & & \text{резервоара,} \end{split}$$

*h*_w – тежишна висина зида
 резервоара

Overturning momentum below the foundation slab

Момент превртања испод темељне плоче

$$M' = \left(m_i \cdot h'_i + m_w \cdot h_w + m_r \cdot h_r\right) \cdot S_e\left(T_{imp}\right) + m_c \cdot h'_c \cdot S_e\left(T_{con}\right) \text{ EN 1998-4 Annex A}$$
(5)

3. ANALYSIS OF RESULTS

A steel tank of cylindrical shape with a roof-shaped roof is examined, relying on the base reinforced concrete ring and attached to the foundation through anchors leaning against the console sheets welded to the cylindrical shell of the tank. The analysis includes a storage tank for water and sulfuric acid, with different geometric characteristics (H / R ratio in the interval 0.5 - 3), and for different types of soil (A, B, C, D, E), and with a maximum acceleration of soil is 0,4g.

The dependence of the basic shear force on the ratio H / R , for the soil category A

3. АНАЛИЗА РЕЗУЛТАТА

Посматра се челични резервоар цилиндричног облика са кровом у облику куполе, ослоњен на темељни армиранобетонски прстен и причвршћен на темељ преко анкера ослоњених на конзолне лимове који су заварени за цилиндрични плашт резервоара. Анализом је обухваћен резервоар за складиштење воде и сумпорне киселине, са различитим геометријским карактериситикама (односом H/R у интервалу 0.5 - 3), и за различите типове тла (A, B, C, D, E), а при максималном убрзању тла од 0,4g.

Зависност основне силе смицања од односа H/R, за категорију тла А

The dependence of the overturning momentum above the foundation slab on the ratio H / R , for the soil category A

Зависност момената превртања изнад темељне плоче од односа H/R, за категорију тла А

Figure 4 - series 1 sulfuric acid, series 2 water

The dependence of the overturning momentum below the foundation slab on the ratio H / R , for the soil category A

Зависност момената превртања испод темељне плоче од односа H/R, за категорију тла А

Слика 5 – крива 1 суморна киселина, крива 2 вода Figure 5 – series 1 sulfuric acid, series 2 water

The dependence of the basic shear force on the ratio H / R , for the soil category B

The dependence of the overturning momentum above the foundation slab on the ratio H / R , for the soil category B

Зависност момената превртања изнад темељне плоче од односа H/R, за категорију тла В

Слика 7 – крива 1 суморна киселина, крива 2 вода Figure 7 – series 1 sulfuric acid, series 2 water

The dependence of the overturning momentum below the foundation slab on the ratio H / R , for the soil category B

Зависност момената превртања испод темељне плоче од односа H/R, за категорију тла В

The dependence of the basic shear force on the ratio H / R , for the soil category C

Зависност основне силе смицања од односа H/R, за категорију тла С

The dependence of the overturning momentum above the foundation slab on the ratio H / R , for the soil category C

Зависност момената превртања изнад темељне плоче од односа H/R, за категорију тла С

Слика 10 – крива 1 суморна киселина, крива 2 вода Figure 10 – series 1 sulfuric acid, series 2 water

The dependence of the overturning momentum below the foundation slab on the ratio H / R , for the soil category C

Зависност момената превртања испод темељне плоче од односа H/R, за категорију тла С

The dependence of the basic shear force on the ratio H / R , for the soil category D

The dependence of the overturning momentum above the foundation slab on the ratio H / R , for the soil category D

Зависност момената превртања изнад темељне плоче од односа H/R, за категорију тла D

Figure 13 - series 1 sulfuric acid, series 2 water

The dependence of the overturning momentum below the foundation slab on the ratio H / R , for the soil category D

Зависност момената превртања испод темељне плоче од односа H/R, за категорију тла D

Слика 14 – крива 1 суморна киселина, крива 2 вода Figure 14 – series 1 sulfuric acid, series 2 water

The dependence of the basic shear force on the ratio H / R , for the soil category E

Зависност основне силе смицања од односа H/R, за категорију тла Е

The dependence of the overturning momentum above the foundation slab on the ratio H / R , for the soil category E

Зависност момената превртања изнад темељне плоче од односа H/R, за категорију тла Е

Слика 16 – крива 1 суморна киселина, крива 2 вода Figure 16 – series 1 sulfuric acid, series 2 water

The dependence of the overturning momentum below the foundation slab on the ratio H / R , for the soil category E

Зависност момената превртања испод темељне плоче од односа H/R, за категорију тла Е

Слика 17 – крива 1 суморна киселина, крива 2 вода Figure 17 – series 1 sulfuric acid, series 2 water

Impact analysis for H / R = 3 ratio depending on soil type

Слика 18. Основна сила смицања за однос H/R=3 у зависности од типа тла Figure 18. The basic shear force for the ratio H/R=3 depending on the soil type

4. CONCLUSION

After the seismic analysis of the steel liquid storage tank, this study shows the moments of overturning and shear force at a maximum acceleration of soil is 0,4g. The analysis of the results is based on three parameters: the type of liquid to be stored, the relationship between the height of the fluid in the tank and the inner radius (H / R), and the soil categories. The analysis showed that shear forces on the basis of reservoirs and overturning moments increased with an increase in the H / R ratio. In addition to the H / R ratio, another very important parameter is the liquid that is stored, in the paper it can be seen that significantly higher seismic impact values arise from the storage of sulfuric acid in relation to water. Also, the impact of the soil category should not be ignored, where it is clearly seen that the category "E" gives the greatest impacts while category "A" gives the least impact. It should be noted that the categories of soils that are aligned in alphabetical order of the same order, in turn, do not give more results. Since, in practice, we can not control the design

4. ЗАКЉУЧАК

Након спроведене сеизмичке анализе челичног резервоара за складиштење течности у овој студији су приказани моменти превртања и смичуће силе при максималном убрзању тла 0,4 g. Анализа резултата се заснива на основу три парамтера: врсте течности која се складишти, односа висине течности у резервоару и унутрашњег радијуса (H/R) и категорије тла. Анализа је показала да силе смицања на бази резервоара и моменти превртања расту са повећеањем односа H/R. Поред односа H/R други веома битан параметар је течност која се складишти, у раду се види да знатно веће вредности сеизмичких утицаја настају услед складиштења сумпорне киселине у односу на воду. Такође не треба занемарити утицај категорије тла, где се јасно види да категорија "Е" даје највеће утицаје док категорија "А" даје најмање утицаје. Треба напоменути да категорије тла које су поређане абецедним редом истим тим редом не дају веће резултате. С обзиром да се у пракси

of the soil category and type of liquid that can be stored in the tank, but the sheer force and the overturning moments can be controlled by the H / R ratio. From which it follows that the H / R ratio is the most important parameter in seismic analysis. при пројектовању не може утицати на промену категорије тла и врсту течности која се складишти у резервоар смичуће силе и моменти превртања могу се контролисати односом H/R. Из чега произилази да је управо однос H/R најважнији параметар у сеизмичкој анализи.

REFERENCES

- EN 1990: Osnove proračuna i dejstva na konstrukcije, deo 4: "Dejstva u silosima i rezervoarima", Građevinski fakultet Univerziteta u Beogradu, Institut za materijale i konstrukcije, Beograd, 1997.
- [2] Eurocode 1: "Actions on structures", Part 1-1: "General actions Densities, self-weight, imposed loads for buildings", Institute for standardization of Serbia, Belgrade, 2012.
- [3] Eurocode 3 Design of steel structures Part 4-2: "*Tanks*", Institute for standardization of Serbia, Belgrade, 2012.
- [4] Eurocode 8 Design of structures for earthquake resistance Part 1: "Generals rules, seismic actions and rules for buildings", Institute for standardization of Serbia, Belgrade, 2015.
- [5] Eurocode 8 Design of structures for earthquake resistance Part 8: "Silos, tanks and pipelines", Institute for standardization of Serbia, Belgrade, 2015.
- [6] G. W. Housner, "The dynamic behaviour of water tanks", Bulletin of the Seismological Society of America, 1963, Vol. 53, No. 2, pp. 381-387.
- [7] P. K. Malhotra, "Seismic response of Soil-Supported Unanchored Liquid-Storage Tanks", ASCE, Journal of Structural Engineering, 1997, Vol. 123, No. 4, pp. 440-450.
- [8] Bešević, M., Mrđa, N., Kukaras, D., Prokić, A., Cvijić, R.: "Dimensioning steel structure of rectangular tank according to the eurocode", Journal of faculty of civil engineering, Subotica, 2015.
- [9] Vukobratović, V., Lađinović, Đ.: "A simplified seismic analysis of circular liquid storage tanks", Novi Sad 2013.
- [10] Puzić, M., Petrović, M.: "The effect of seizmic forces on vertical cylindrical storage tanks", Integritet i vek konstrukcija (1-2/2002).
- [11] Kotrasova, K., Kormanikova, E., Ioan Sorin, Leoveanu.: "Seismic analysis of ele vated reservoirs", International Multidisciplinary Scientific GeoConference SGEM, 2013
- [12] Ruifu, Z., Dagen, W., Xiasong, R.: "Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system", Earthquake engineering end engineering vibration, 2011
- [13] Di Carculicio, A., Fabbrocino, G., Manfredi, G.: "Fem seismic analysis of steel tanks for oil storage in industrial facilities", Word conference on Earthquake Engineering, October 12-17, 2008, Bejing, China
- [14] Bešević, M., Živković, S., Vojnić Purčar, M.: *"Design steel spherical tank height H=44m according to eurocode"*, Journal of faculty of civil engineering, Subotica, 2015.
- [15] Bešević, M., Prokić, A., Svilar, M., Đurić, N., Lukić, D.: "Numerička analiza 3D i linijskog modela vertikalnog cilindričnog čeličnog rezervoara", Zbornik radova GNP, 2016.
- [16] P. K. Malhotra, Wenk, T., Wieland, M.: "Simple Procedure for Seismic Analysis of Liquid-Storage Tanks", Structural Engineering International, 3/2000.