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Summary: Big Bang — Big Crunch algorithm is relatively new optimization method
inspired by one of the theories of the evolution of the universe. In this paper, the
algorithm is presented for solving optimum design of spatial truss structure. Numerical
results of solving a benchmark problem demonstrate the efficiency of the presented
method compared with other authors’ results.
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1. INTRODUCTION

Truss optimization is one of the most active branches of the structural optimization. Size
optimization of truss structures involves determining optimum values for member cross-
sectional areas that would minimize the weight of a given truss structure. This minimum
design should also satisfy the inequality constraints that limit design variable sizes and
structural responses. In the last decades, different nature inspired evolutionary
algorithms have been developed and employed for structural optimization, such as
Genetic Algorithms, Bat Algorithm, Wolf Pack Search, Rats Herds Algorithm, Ant
Colony Optimization, Particle Swarm Optimizer and many other heuristic procedures
that incorporate random variation and selection mechanisms. Information obtained in
each cycle are used for choosing new starting points in the subsequent cycles. These
algorithms do not require for a given function to be derivable and an explicit relationship
between the objective function and constraints is not needed.

Big Bang — Big Crunch (BB-BC) algorithm, introduced by Erol and Eksin [1], is
relatively new optimization method that relies on one of the theories of the evolution of
the universe namely, the Big Bang and Big Crunch theory and has a low computational
time and high convergence speed.
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In this study, BB-BC algorithm is implemented for solving the truss optimization
problem. Comparison of the results obtained in solving a benchmark problem (25-bar
spatial truss) and the results proposed by other authors indicates that BB-BC method is
efficient and reliable for optimum design of spatial truss structures.

2. OPTIMUM DESIGN OF TRUSS STRUCTURES

Mathematically, the optimal design of a truss can be formulated as finding:

A=[4,4,,.,4]4 €D (1)

where 4 is the set of design variables, 4; is the cross-sectional area of member i, ng is the
number of groups of members and D denotes the allowable set of values for the design
variable A4;, to minimize

nm

W(A) =3 7AL ©)

where W(A) is weight of the structure; nm is the number of members of the structure; y;
represents the material density of member 7 and L; is the length of member i, subject to
constraints:

g, (A)<0,j=12,.,n 3)

Usual constraints for stress structures are stress nodal displacements limitations.

3. BIG BANG-BIG CRUNCH (BB-BC) ALGORITHM

The BB-BC method developed by Erol and Eksin [1] consists of two phases: a Big Bang
phase and a Big Crunch phase. The authors associated the random nature of the Big
Bang to energy dissipation or the transformation from an ordered state (a convergent
solution) to a disorder or chaos state (new set of solution candidates). This method is
basically similar to the Genetic Algorithms in respect to creating an initial population
randomly. The creation of the initial population randomly is called the Big Bang phase.
In this phase, the candidate solutions are spread all over the search space in a uniform
manner.
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The Big Bang phase is followed by the Big Crunch phase. The Big Crunch is a
convergence operator that has many inputs but only one output, named as the centre of
mass, since the only output has been derived by calculating the centre of mass, where the
term mass refers to the inverse of the merit function value. The point representing the
centre of mass that is denoted by x. and can be calculated according to:

)—C'c — i:lN, 1 (4)
5

where x; is a point within an n-dimensional search space generated, f; is a fitness function
value of this point, and N is the population size in Big Bang phase.

The convergence operator in the Big Crunch phase is different from ‘exaggerated’
selection since the output term may contain additional information (new candidate or
member having different parameters than others) than the participating ones, hence
differing from the population members. This one-step convergence is superior compared
to selecting two members and finding their centre of gravity. This method takes the
population members as a whole in the Big-Crunch phase that acts as a contraction
operator.

After the Big Crunch phase, the algorithm creates the new solutions to be used as the Big
Bang of the next iteration step, by using the previous result (centre of mass). This can be
accomplished by spreading new off-springs around the centre of mass using a normal
distribution operation in every direction, where the standard deviation of this normal
distribution function decreases as the number of iterations of the algorithm increases:

X = x )

where x° stands for centre of mass, / is the upper limit of the parameter, r is a normal
random number and k is the iteration step. Then new point x"" is both upper and lower
bounded.

After the second explosion, the new centre of mass is calculated and successive
explosion-contraction steps are carried repeatedly until a stopping criterion has been met.

The BB-BC approach takes the following steps [1]:
e Step I: Form an initial generation of N candidates in a random manner. Respect
the limits of the search space.
e Step 2: Calculate the fitness function values of all the candidate solutions.
e Step 3: Find the centre of mass according to (10). Best fitness individual can be
chosen as the centre of mass.
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e Step 4: Calculate new candidates around the centre of mass by adding or
subtracting a normal random number whose value decreases as the iterations
elapse of using (11).

e Step 5: Return to Step 2 until stopping criteria has been met.

4. NUMERICAL EXAMPLE

The topology and nodal numbers of a 25-bar spatial truss structure are shown in Figure
1. In this example, designs for two load cases (Case 1 — discrete variables, Case 2 —
continuous variables, Table 1) are performed and the results are compared to those of
other optimization techniques employed by different authors [2—10]. In these studies, the
material density is considered as 2767.990 kg/m’ and the modulus of elasticity is taken
as 68.950 MPa. Twenty five members are categorized into eight groups, and the design
variables are the areas of each truss group. The design variable A; is the member that
connects node 1 to node 2; A, are members 1-4, 2-3, 1-5 and 2-6; A; are members 2-5,
2-4, 1-3 and 1-6; A, are members 3-6 and 4-5; As are members 3-4 and 5-6; Ag are
members 3-10, 6-7, 4-9 and 5-8; A, are members 3-8, 4-7, 6-9 and 5-10; and Ag are
members 3-7, 4-8, 5-9 and 6-10. The range of cross-sectional areas varies from 0.6452—
21.94 cm’. Maximum allowable node displacement are + 8.89 mm in every direction,
while the axial stress constraints and loading conditions are presented in Table 1.

"=y
L, =1905.00 mm -
L; =2540.00mm D
L, = 5080.00mm

Qe

Figure 1. 25-bar spatial truss
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Table 1. Loading conditions and stress limitations for 25-bar truss

Loading conditions (kN) Stress limitations (MPa)
Node 1 2 3 6 Group Compression Tension
Px 0.0 0.0 0.0 0.0 1,4,5 241.96 275.80
Case 1 Py 89 89 0.0 0.0 2 79.913 275.80

Pz 2225 2225 0.0 0.0
Px 4.45 0.0 222 05
Case2 Py 445 445 0.0 0.0
Pz 2225 2225 00 0.0

119.31 275.80
46.603 275.80
47.982 275.80
76.410 275.80

0 3 N W

Obtained results and comparison with results of other authors are presented in Table 2.
It can be concluded that the final results are very satisfactory because proposed
algorithm reaches a satisfying solution for the discrete design variables (Case 1) and an
excellent solution for the continuous variables (Case 2). Besides that, BB-BC has low
computational time and high convergence speed compared to the Genetic Algorithms.

Table 2. Performance comparison for 25-bar truss

Case 1
Rajeev | Erbatur | Coello | Togan | Lemonge .
A 2] Bl | 4 | (5] | [ |'hisstudy
A 0,645 0,645 0,645 0,645 0,645 0,645
A, 11,614 7,742 | 4,516 1,936 1,936 4,516
Aj 14,840 | 20,646 | 20,646 | 21,937 21,937 21,937
Ay 1,290 0,645 0,645 0,645 0,645 0,645
As 0,645 7,097 | 9,033 | 12,904 13,549 11,614
Ag 5,162 5,807 | 7,097 | 6,452 6,452 6,452
A 11,614 2,581 3,226 3,226 3,226 1,936
Ag 19,356 | 21,937 | 21,937 | 21,937 21,937 21,937
W (kg) 247,67 | 223,99 | 224,05 | 219,25 219,93 220,78
Case 2
Venkayya Lee Saka | Adeli Togan .
A 7] 81 | o] | nop | (5] | Thsstudy
A 0,181 0,303 0,065 0,065 0,645 0,065
A, 12,671 | 13,046 | 13,278 | 12,814 13,549 12,827
Ay 19,879 | 19,033 | 19,279 | 19,104 18,066 19,298
Ay 0,065 0,645 0,065 0,065 0,645 0,065
As 0,065 0,090 | 0,065 | 0,065 0,645 0,065
Ag 4471 4439 | 4,491 5,200 4,516 4,413
A, 10,827 | 10,690 | 10,775 | 10,839 10,968 10,820
Ag 16,949 | 17,182 | 16,724 | 16,324 17,40 17,182
W (kg) 247,43 | 246,93 | 247,32 | 247,51 249,95 247,28

| 3BOPHUK PAOOBA TPABEBVHCKOI ®AKYJTITETA (2014) | m



40 ANNIVERSARY FACULTY OF CIVIL ENGINEERING SUBOTICA

International conference

Contemporary achievements in civil engineering 24. — 25. April 2014. Subotica, SERBIA

5. CONCLUSION

In this paper a heuristic population-based search inspired by the Big Bang and Big
Crunch theory (BB-BC) of the evolution of the universe is implemented for solving the
spatial truss optimization problem. Comparison of numerical results for the benchmark
problem with the solutions obtained by other heuristic approaches indicates that
proposed method is efficient and sufficiently reliable for solving complex problems in
the field of optimum structural design.
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OIITUMHU3ALINJA PEHIETKE AJITOPUTMOM
BEJIUKHU ITPACAK - BEJIUKO CA’KUMAIBE

Pesume: Ancopumam Benuxu npacax — 6enuKo caxcumare je peramuero Ho8a Memooa
onmuMuayuje UHCRUPUCAHA jeOHOM 00 meopuja o egonyyuju Kocmoca. Y pady je
NPUKA3aH  NPUMEHA 0602 ANICOPUMMA  3d  peulasare Nnpoobjiema  ONnmuUMAIHOZ
OUMEH3UOHUCAFA NPOCHOPHE peuiemkacme KoHcmpykyuje. Hymepuuxu pesyimamu
Odobujenu pewagarnem CMaHoapoHoz npobiema 3a mecmuparbe noKasyjy egurxacrocm
aneopumma y nopehery ¢ pe3yimamuma Opyeux aymopa.

Kayune peuu: Benuxu npacax - 8eauxo caxcumaroe, ONmumMusayuja, pewemxacme
KOHCmMpYyKyuje
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