40 FOOVMHA TPABEBUHCKOI ®AKYNTETA CYBOTULIA

MeRhyHapoaHa KoHdepeHUmMja
CaBpemeHa gocturiHyha y rpafjeBuHapctBy 24.-25. anpun 2014. Cy6otuua, CPBUJA

CRITICAL CRACK LENGTH IN SMOOTH
REINFORCEMENT BARS

Ljiljana M. Kozari¢'
Dragan D. Milaginovi¢? UDK: 539.421
DOI: 10.14415/konferencijaGFS2014.016
Summary: The cases that occur in the implementation of the smooth reinforcement steel
bars are analyzed. Geometry of the initial cracks on axially tensioned cylindrical rods
are taken from calculations based on the rheological-dynamical analogy (RDA). Plastic
zone size is determined by Dugdale model. From the fracture mechanics standpoint,
model is reduced to a plane with symmetrically placed edge cracks.
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1. INTRODUCTION

Linear-elastic fracture mechanics (LEFM) assumes that the plasticity in the zone ahead
of the crack front can be neglected because the nonlinear deformation of materials is
limited to a very small area around the crack tip. However, in a highly ductile material
that is not happening. In the soft steel, a crack expansion is preceded by large plastic
deformation. Although the element load is below the yield point, just before the
expansion of the crack, the stress field in the zone around the crack tip reaches the yield
point or close to its value. In the elastic-plastic fracture mechanics (EPFM) various
models and approaches for determining the length of plastic zone ahead of the crack tip
are proposed. Dugdale model [1] attributes the reduction of the stress at the top of crack
to macroscopic plasticity while by Barenblatt model [2] this effect is caused by the large
cohesive forces in the vicinity of the crack tip, and its distribution is a constant of a
material. Inclusion of RDA to the analysis of problems related to fracture mechanics
starts with a paper published by Milasinovi¢ [3][4]. This paper shows how the RDA can
be used in the study of stress concentration at the crack tip, calculate: fatigue fracture
frequency, crack depth, fatigue strength, cyclic ductility, crack width, crack opening and
stress intensity factor (SIF).

2. DUGDALE MODEL

Elastic-plastic crack expansion by Dugdale is the classical theoretical basis of EPFM.
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The plastic zone around the crack tip is included in the linear-elastic approach by having
the real crack length 2a expanded by the value of 2¢, Figure 1.

Figure 1. Dugdale model

Length 2 (a + ¢) gives the equivalent elastic crack in Dugdale model. External forces are
present at length ¢ with intensity oy which prevent crack opening on the part of plastic
deformation. Length of plastic zone ¢ is determined so that the stress on the tip of an
imaginary crack is not singular (K; =0) and can be calculated using Equation (1)

=cos£o-—°c (D)
a+c 2 oy

With symmetrically positioned edge cracks, Figure 2,
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Figure 2. Geometry for edge cracks

the length of the plastic zone by Dugdale is also determined from the condition that the
SIF on the edge of an imaginary crack equals zero:

Kl(aw,a+c)+K1(ay,a+c)=O @)

Stress intensity factor (SIF), at the top of an imaginary crack, due to an external load o,

is as follows [5]
K, (0..a+c)=C o,4m(a+c) 3)
where C=1.12.

At the top of an imaginary crack due to stress intensity oy, which prevents crack opening,
SIF can be determined based of its expression due to the concentrated force at arbitrary
point:
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where
O=-oydx for P<x<b+c

Displayed equation for SIF is actually Greene's function for its determination.
SIF at point A due to the stress oy is given by the following equation

K, (oy,a+c)= ‘/x+ de+ [ —2L ‘[x+bdx (6)
(b+c) Nab \x=b

With substitution of variable x=-u, first 1ntegral becomes
X=-u —-b=-u

-b
d_
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b+c=u
b+c \/7
u+b

Thus, SIF can be expressed as

_ b+c 2 c
11 R ] e - A P

By solving the integral

Oy [x+b b=u j ( )du =

b]‘-c x
= =
» x> —b°
on top of an imaginary crack due to stress oy is obtained
K, (oy,a+c)= _\/c(2b+c
By substituting (3) and (8) into (2) yields
2
112 o, \Jr(a+c) - J(%‘/C(Zb“) -0
z

therefore, the Dugdale crack tip plasticity model for the symmetrically placed edge
cracks in an infinite strip is

c(2b+c)

®)

1.12£G—°O= c(2b+c)
2 oy b(a+c) )

in which

| 3BOPHUK PAOOBA TPABEBVHCKOI ®AKYJTITETA (2014) | m



40 ANNIVERSARY FACULTY OF CIVIL ENGINEERING SUBOTICA

International conference

Contemporary achievements in civil engineering 24. — 25. April 2014. Subotica, SERBIA

D,
h="2- (a+ c)
2 (10)
Also the SIF at point B due to the stress oy1s given by the following equation
Kz (oy.a+c)
(b+ ) x+b ;z-b x+b
With substitution of variable x=-u, first 1ntegral becomes
X=-u —-b=-u
-b
_O-Y x—b b=u
dx = Ddu =
zic)‘/”b x+b dx=(—l)du —(b+c)=—u -[ «/ —u+b ( )

b+c=u

u+b

Thus, SIF can be expressed as follows
2 b+c
Kz (oy,a+c)= j ‘/x+ ,/ O-Y al dx
x+b xz —b?

Kz (ay,a+c)=KIA (O'Y,a+c)

and

This means that the lengths of plastic zones at both end cracks are equal.

3. NUMERICAL RESULTS

For the analysis of critical crack length, the axial stretched cylindrical rod was selected:
elastic modulus E =210GPa , toughness G =107 KJm™ .

Critical crack lenght is calculated for smooth reinforcement bars with diameters
D, =19, 16, 14, 12, 10 and 8mm .

Rod model is analyzed as a three-dimensional rotationally symmetric and reduced to the
case of plane strain in classical fracture mechanics model with symmetrically placed
edge cracks. MilaSinovi¢ [4] proposed that initial cracks geometry a, of the rod are
obtained as a result of calculation based on the RDA.

Dugdale considered the plastic regions to take the form of narrow strips extending a
distance ¢ from each crack tip. For purpose of the analysis in this paper, the elastic edge
crack of length a= a, is allowed to extend elastically to a critical crack length a.= a,
+c=a+c; however, an internal stress is applied in the plastic regions ¢ to close extended
part of crack.

Initial crack depth a/~a=5.26485 mm was obtained as a result of calculation based on the
RDA at a load of 6,,=142 Mpa [4], which corresponds to the stress proportionality op for
a given material. According to load, appropriate yield stress is 6,=258.17 MPa.
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We can define the length of plastic zone ¢ using Equation (9) as follows

c(2(0'019

LpZ 142 2

2 238.17 (% —0.00526485 —)(0.00526485 + ¢)

—0.00526485-c)+c)

Solving this equation we get
¢ =0.00224705m
Critical crack depth is the sum of the initial crack depth a,=a and the length of a plastic
zone ¢
a+c=526485mm+2.24705mm =7.5119 mm

Result obtained with RDA concept improved by Dugdale crack tip plasticity model for
the symmetrically placed edge cracks in an infinite strip corresponds to the experimental
results for cylindrical rods which can be calculated using the following equation [6]
D,
K; = (1.72—0—1.27)i
d 3

D,?

where d =D, —2(a+c), while SIF in the case of plane strain is K, =\/GCE(1—V2 )
By solving
0.019°7

142x10°
0.019 j 4 .
1.72—2-1.27 =1.41327x10
( d V0.019°

d =0.0031233m
we get critical crack depth
Dy—d 19mm—3.1233mm

atc= =7.93835mm
2 2
Results for other diameters are shown in Table 1.
Table 1.
_ experimental
Do NTIIi 1\/([)—5 4a y ate results
(mm] | [MPa] | [MPa] | [mm] | [mm] | [mm] -
8 142 216,99 2,4167 1,0959 3,5126 3.55434
10 142 224,48 3,27138 1,23676 4,50814 4.38316
12 142 231,96 3,92944 1,44556 5,37500 5.19613
14 142 239,45 4,43302 1,69330 6,12632 5.99498
16 142 246,93 4,82427 1,93967 6,76394 6.78102
19 142 258,17 5,26485 2,24705 7,51190 7.93835
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4. CONCLUSION

The present study has analyzed the physical mechanism and experimental proof for the
transition from the complex three-dimensinal RDA crack geometry into a simple plane
one using the Dugdale model.

A new analytical RDA model for the predictions related to fatigue crack growth and
failure of rods made of ductile materials has already been presented [4]. Considering of
the initial crack geometry at a load which corresponds to the stress proportionality for a
given material and using the Dugdale model [1], the experimental results [6] show that
the model predictions are reasonable.
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KPUTUYHA NY/KUHA ITPCJIMHE I'VTATKOT
APMATYPHOI YEJIMKA

Pezume: Ananusupanu cy ciyuajesu Koju ce jagmsajy y npUMEHU 2iamKoe apMamypHoe
yenuka. leomempuja nouemue NpCiAuUHE HA AKCUJATHO 3AMESHYMOM YUTUHOPUUHOM
wmany o0obuja Kao pesyamam HpoOpayyHa 6A3UpaAHo02 HA PeoaoUKO-OUHAMUYKO]
ananoeuju (PLAA). Beruuuna niacmuune 30ne oopehena je npema /lacejnosom mooeny.
Ca acnexma Mmexamuxke JaoMa MoOel je c6edeH HA PABAHCKU €A CUMEMPUUHO
ROCMABBEHUM PYOHUM NPCIUHAMAL.

Kwyune peuu: /lazoejnos mooen, PI{A, niacmuuna 30Ha, Kpumuyna npciuna
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