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Abstract: 
This paper is concerned with experimental verification of inelastic buckling and 

failure analysis of concrete panels according to rheological dynamical theory (RDT). 
Iterative modulus calculation of buckling stress is presented and verified for concrete 
panels under biaxial and axial compression. For biaxial compression, three different 
concrete mixtures with two stress ratios are considered. Some experimental results 
from literature are also used to verify RDT calculation for concrete panels under axial 
compression as well as analytical expressions for concrete wall panel in two-way 
action. Besides normal concrete strength, this calculation can be used for fibre-
reinforced ultra-high performance concrete UHPC. The calculation according to RDT 
had shown that the values of material parameters of such modulus of elasticity and 
Poisson’s ratio have a significant influence on the structural material constant as well 
as buckling stress results. The calculation of buckling stress which is necessary for RDT 
calculation was carried out using the corresponding model in Abaqus software.  
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1 Introduction 

Compression members such as walls and columns have a very important role for the 
stability of buildings, industrial objects etc. There are many scientists and engineers, who have 
studied the structural stability problems. Leonhard Euler developed mathematical solution for 
columns under compression. With Euler's equations the critical buckling load of elastic material 
columns under various end conditions can be calculated. [1] have studied the theory of elastic 
stability of thin panels. They derive the mathematical solutions for plates under axial and biaxial 
compression.  
Biaxial concrete strength has been topic of interest of many researchers. The results by [2] have 
shown that the compressive strength under biaxial compression is only 16 % larger than under 
uniaxial compression. [3] have studied the normal and high strength concrete panels specimens 
with dimensions 150 x 150 x 40 mm under biaxial loading. Their results show that the ultimate 
strength of concrete under biaxial compression was higher than under uniaxial compression. 
The maximum biaxial strength occurred at a biaxial stress ratio of 0.5 for all specimens tested. 
Load bearing behavior and stability of concrete wall panels have been investigated by several 
researchers, where some of the basic mathematical variations of different parameters were 
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researched. This includes the variation of panel dimension (slenderness, thickness), steel 
reinforcement, eccentricities, concrete strength, and support condition. Many studies have 
investigated the behavior of concrete wall panel in one or two-way action. Two-way action 
considers the buckling of concrete walls, with side supports and axial compression. An overview 
of researches can be found in [4]. [5] carried out experimental studies on reinforced concrete 
panels with and without fibres to biaxial compression-tension loading. The panels were 1000 
mm long in the tensile direction, 500 mm high in the compression direction and 100 mm thick. 
The results have shown the reduction of the compression strength of the cracked reinforced 
concrete with and without steel fibres. A material model for cracked reinforced concrete with 
and without fibres is derived. Methods for design concrete walls are also a part of many codes 
and standards. Most of the mathematical equations are based on experimental investigations 
or some empirical solutions. [6] refers to reinforced concrete walls with a length to thickness 
ratio of 4 or more and in which the reinforcement is taken into account in the strength analysis. 
For walls subjected predominantly to out-of-plane bending, the rules for slabs apply. Second 
order effects may be ignored, if they are less than 10 % of the corresponding first order effects. 
[7] proposed a new simpler formula of the Euler buckling stress of isotropic rectangular panels 
under axial compression loading in one and two orthogonal directions. This formula takes into 
account the transverse shear effect in a uniform manner across the thickness of the panel. The 
numerical verification was made on steel panels using the finite element method.  
This paper shows the calculation and experimental verification of biaxial buckling load using the 
RDT. RDT is a mathematical-physical analogy proposed by Milašinović D. D. and it describes 
inelastic and time-dependent problems. This theory describes the critical mechanical behavior 
of viscoelastoplastic (VEP) materials under the cyclic stress variation. The scheme of the RDA 
modulus iterative method is already presented by [8]. This method was numerically verified for 
stability problems of steel panels. The experimental verification of this method on concrete 
panels is presented in this paper. Chapter 2 contains a short overview of the theory and RDA 
modulus iterative method. In chapter 3 is presented the experiment and in chapter 4 the 
verification on examples from literature.  

2 Buckling according rheological-dynamical theory 

2.1 RDA-a short overview 
Since 2000 Milašinović D. D. developed a mathematical-physical analogy called rheological-

dynamical analogy (RDA) which describes inelastic problems related to the load-bearing 
capacity of structural members (such as buckling and VEP deformation, fatigue of metals etc.). 
Mathematical analogy is given between rheological and dynamical model. The rheological body 
is shown in Figure 1 using the following symbols: N for the Newtonian dashpot, StV for Saint-
Venant’s body, H for the Hookean spring, “|” for a parallel connection and “—” for a connection 
in a series. 
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Figure 1: Analogy between rheological and dynamical model - [9] 

Since the Hookean spring, Kelvin’s body (K = H|N) and viscoplastic body (StV |N) are connected 
in a series, the stress loads in all the bodies are equal. The total axial strain is the sum of three 
components: elastic (instantaneous), viscoelastic and viscoplastic. Milašinović D. D. (1996) [10] 
gives differential equation for this model, 
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where EH is Young's modulus and σY is the uniaxial yield stress. The four material constants in 
fixed steps of time are: coefficient of viscoelastic viscosity λK and viscoplastic viscosity λN, and 
moduli EK (viscoelastic) and H´ (viscoplastic). Milašinović D. D. (2000) [11] derived the solution 
of the differential equation and presented the inelastic response of viscoelastic and viscoplastic 
material under cyclic stresses with constant amplitude. The solution of the differential equation 
is also presented in [12] and [13]. Additionally to these solutions the RDA modulus for 
homogeneous isotropic inelastic material was derived in RDT, which is shown in the Equation 
(2), 

 𝐸+ = 𝐸# ∙
,*-%*.
(,*.)%*-%

 (2) 

where EH is Young's modulus, 𝛿 is the ratio of the load or the stress frequency to the frequency 
of natural vibrations and 𝜑 is the creep coefficient. The RDA modulus is used in different 
inelastic problems for mechanic as well as for stability issues.  
[9] derived relation between Poisson’s ratio and creep coefficient which is based on the 
Bernoulli energy theorem. This relation is given by (3), 

 𝜑 =		 /∙0
,1/∙0

 (3) 

where 𝜇 is Poisson’s ratio. 

2.2 RDA modulus iterative method 
[8] derived RDA equations for isotropic 3D continua. The RDA modulus for homogeneous 

isotropic inelastic material is presented in other form, which is given by (4), 

 𝐸+ =
2∙!$
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 (4) 
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The second relation, given by Eq. (5) assumes the linear relationship between the stress σ and 
the creep coefficient. [9] has introduced this assumption and named it the law of flow, 

𝜎(𝑡) = 5&
.∗
∙ 𝜑(𝑡);					𝜎! =

,
$&
∙ 𝜑∗    (5) 

where KE is the structural material constant and 𝜑∗ the creep coefficient at the limit of elasticity. 
This coefficient KE can be defined on concrete cylinders and is presented in [9] with (6) and (7): 
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where	𝛾 is the specific weight of the material, 𝑖 is the minimum radius of gyration, 𝜆!  is the 
slenderness ratio at the limit of elasticity and I is the minimum moment of inertia of the cross 
section. Taking into account (4) and (5) a mathematical function between RDA modulus and 
critical stress is made. The RDA modulus in first iteration can be calculated using the equation: 

 𝐸+
(,) = 2∙!$
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The buckling stress 𝜎:; causes the decrease of stiffness and is the input parameter for the next 
iteration. The corresponding modulus after (n) iterations is given by the following equation: 

 𝐸+
(<) = 2∙!$
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 (9) 

(9) is used to calculate the buckling stress of concrete panels under biaxial compression. The 
buckling stress is calculated using the finite element method in the Abaqus software. The RDA 
modulus changes in each iteration from the buckling stress and for each iteration a buckling 
calculation in Abaqus is required. This iterative procedure can be simplified by using a linear 
numerical function between modulus and buckling stress. This numerical function was found 
using several buckling stress calculations for different E-modulus and is used in (9). This 
procedure is described in Chapter 3. 

3 Experimental verification 

3.1 Materials and test specimen  
The concrete panel specimens used in this study were 500 x 500 x 50 mm in dimension. The 

panels are reinforced with a Q84 reinforcing mesh on both sides that has a bar thickness of 
4 mm. Concrete cover is 10 mm. The edges of the panel are additionally reinforced with stirrups 
of 4 mm, that are welded on reinforcement mesh. All reinforcement is constructive and in 
theoretical consideration is not taken into account. Reinforcement should exclude early failure 
of the corners. Self-compacting concrete with 8 mm aggregate size was used. Normal weight 
concrete mixtures with three different concrete strengths are tested. The reinforcement as well 
as formwork of panels are presented in Figure 2. The care and storage of all concrete samples 
until the test was carried out within the company Binis Beton in Banja Luka (Bosnia and 
Herzegovina), where the concrete strength on cubes 150 mm are tested. Concrete cylinders 
d/h = 150 mm/300 mm are tested at the University of Novi Sad - Serbia (Laboratory of Civil 
Engineering Subotica). The elastic modulus, Poisson’s ratio and density are tested on cylinders. 
The results are shown in Table 1. 
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Figure 2: Reinforcement and formwork of concrete panels 

3.2 Experimental set-up  
The experiments were performed in the company Selena d.o.o. in Banja Luka (Bosnia and 

Herzegovina) with a hydraulic machine (No. 000100). The machine was upgraded for the biaxial 
compression tests. Horizontal compression was realized by two parallel-bonded hydraulic 
cylinders (Product Lukas with 100 tons per cylinder) which are placed in the same steel frame 
with concrete panels. The steel frame is coated with fat on the inside to reduce the friction 
allocation between the panel and the steel frame. Eccentricity of load was zero. The 
experimental set-up is shown in Figure 3. 

 
Figure 3: Experimental set-up  

Two different biaxial stress ratios for compression were considered. For tests with stress ratio 
1.0 it was necessary to use a pressure booster because the horizontal and vertical cylinders 
deliver different forces. A pressure booster is a cylinder with different surfaces of the front and 
dorsal sides whose surfaces throughout the mechanism are obtained by applying Pascal's law. 
These surfaces are approximately aligned with the surfaces of the horizontal cylinders and the 
vertical cylinder of the press. The vertical cylinder has the following dimensions D1 = 320 mm 
(A1 = 804 cm2), while two horizontal cylinders with a diameter of D2 = 171,5 mm together give 
the area A2 = 462 cm2 and the ratio of their surfaces is 0,57. To obtain a ratio of 1,0, a pressure 
booster is used, which has a cylinder diameter of 62 mm and a piston rod of 45 mm. The ratio 
of the dorsal and front surfaces is 2,11; thus, the pressure in the horizontal cylinders will be 
many times greater than the pressure in the vertical cylinder. Without considering the influence 
of friction forces in cylinders the ratio of the horizontal and vertical forces would be 
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0,57 x 2,11 = 1,2. This ratio was corrected by measuring the friction of the cylinder. The 
influence of the friction in the cylinder was determined using one horizontal cylinder which was 
placed in the ram press. The separate measurement was carried out by first suppressing the 
upper cylinder with the lower cylinder and at the same time reading pressures. The 
measurement was also made in the opposite direction by pumping with a manual pump and 
moving the cylinders down. Loss due to friction in the cylinder was determined to be about 10%. 
Taking into account the loss due to friction in the pressure booster the stress ratio was corrected 
to 1,08. For the stress ratio 0,57 the pressure booster was not necessary. Figure 4 shows the 
entire tying scheme. 
In this experiment the stress ratios of horizontal and vertical force 1,08 and 0,57 were applied. 
Pressure readings on the manometer are converted into pressure on the concrete surface 
50 x 5 cm and a coefficient of 0,9 is used due to the influence of friction in the cylinders. The 
approximate load rate range was about 0,2 – 0,6 MPa/s. This was made using a force increment 
regulator. The measuring of the concrete strain in two directions was carried out on a few 
samples using a strain gauge (HBM-1-LY41-50/120) and the corresponding Catman software, 
which is owned by the Institute for Testing Materials and Structures in Banja Luka (Bosnia and 
Herzegovina). The strain measurements in the edge area (distance from edge 7,5 cm) was used 
only to control the real stress ratios during the experiment. All pressure measurements were 
recorded with a camera until concrete panel failure.  

 
Figure 4: Experimental tying scheme 

3.3 Test results 
The test results on cubes and cylinders are shown in Table 1 and the measurement on 

concrete panels under biaxial compression with stress ratios 1,08 and 0,57 is shown in Table 2. 
Failure of concrete panels is shown in Figure 5.  
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Figure 5: Failure of concrete panel (stress ratio 1.08 left) / (stress ratio 0,57 right) 

Table 1: Material parameters for three different concrete mixtures  

No. 

M
ix

tu
re

 

Age 
(days) 

Density 
γ 

(kg/m3) 

Modulus 
of 

Elasticity 
E (MPa) 

Poisson’s 
ratio  

µ  

Compressive 
strength 

fc,cylinder (MPa) 

Compressive 
strength 

fc,cube (MPa) 

1 
A 

119 2416,33 36602,62 0,110 41,64 47,29 
2 179 2405,01 36200,00 0,120 38,25 44,01 
3 179 2397,46 38320,39 0,110 39,61 46,11 
average values 2406,26 37041,00 0,113 39,83 45,80 
4 

B 
179 2463,48 38800,00 0,100 45,04 57,51 

5 179 2444,62 37722,22 0,125 59,30 58,89 
6 116 2471,03 39180,61 0,120 48,66 58,88 
average values 2459,71 38567,61 0,115 51,00 58,42 
7 

C 
157 2442,73 38175,52 0,104 58,17 72,27 

8 111 2476,69 38985,85 0,090 58,17 72,91 
9 179 2450,28 39357,14 0,103 48,67 73,43 
average values 2456,57 38839,50 0,099 55,00 72,87 

3.4 Verification of test results according to RDT 
The calculation method according to the RDA modulus iterative method is shown in this 

chapter for concrete panels (stress ratio 0,57 and mixture A); other results can be found in Table 
4. The first iteration for the calculation of the buckling stress is made using the finite element 
method in Abaqus (with finite element type S3), where the linear elastic model with modulus 
elasticity and Poisson’s ratio from Table 1 are considered. To avoid a repeated calculation in 
Abaqus, a linear function between modulus of elasticity and buckling stress is used and thus the 
iterative method is accelerated. The Abaqus model and the linear function for the stress ratio 
of 0,57 are shown in Figure 6. The coefficient KE was calculated using Eq. (6) and (7). The values 
for mixtures A, B, and C were 0,07, 0,06, and 0,08, respectively. The iterative method was 
performed using Eq. (9) and is shown in Table 3.  
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Table 2: Vertical buckling stress on concrete panels under biaxial compression - test results  

Concrete panel  Vertikal buckling stress σv (MPa) 
P1-1.08-A 20,3 

St
re

ss
 ra

tio
 σ

h/
σ v

 =
 1

,0
8  

    P7-1.08-B 20,3 
P8-1.08-B 18,8 

average value 19,6 
    P9-1.08-C 24,6 

P10-1.08-C 26,0 
average value 25,3 

      
P1-0.57-A 27,5 

St
re

ss
 ra

tio
 σ

h/
σ v

 =
 0

,5
7  

P2-0.57-A 26,1 
P3-0.57-A 31,8 
P4-0.57-A 28,9 

average value 28,6 
    P5-0.57-B 34,7 

P6-0.57-B 28,9 
P7-0.57-B 30,4 
P8-0.57-B 31,3 

average value 31,3 
    P9-0.57-C 35,3 

P10-0.57-C 43,4 
P11-0.57-C 37,6 
P12-0.57-C 32,4 

average value 37,2 

  
Figure 6: Abaqus model (left) / Linear function between modulus of elasticity and buckling stress (right) 

 
The buckling stress on concrete panels according to RDT is 29,14 MPa, which was very well 
matching with the experimental value of 28,60 MPa. A comparison between the RDT calculation 
and the experiment values are shown in Table 4. The buckling mode 1 of concrete panels in 
Abaqus in first iteration is presented in Figure 7. 
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Table 3: RDA modulus iterative calculation for mixture A and stress ratio 0.57 

Modulus of 
Elasticity                  
E (MPa) 

Poisson’s ratio       
µ  KE RDA modulus  

ER (MPa) 
Vertikal buckling stress                                                              

σv (Mpa)  

37041 0,113 0,07 37041,00 88,90 
37041 0,113 0,07   5976,82 14,34 
37041 0,113 0,07 16307,68 39,14 
37041 0,113 0,07 10355,17 24,85 
37041 0,113 0,07 13113,05 31,47 
37041 0,113 0,07 11672,71 28,01 
37041 0,113 0,07 12383,07 29,72 
37041 0,113 0,07 12022,24 28,85 
37041 0,113 0,07 12202,86 29,29 
37041 0,113 0,07 12111,77 29,07 
37041 0,113 0,07 12157,53 29,18 
37041 0,113 0,07 12134,50 29,12 
37041 0,113 0,07 12146,08 29,15 
37041 0,113 0,07 12140,25 29,14 
37041 0,113 0,07 12143,19 29,14 

 
Table 4: Comparison between RDT calculation results and experiment values 

Stress ratio / Mixture Vertikal buckling stress                                                              
σv (Mpa) - Test 

Vertikal buckling stress                                                              
σv (Mpa) - RDA ⴄ (-) 

1,08 / A 20,3 23,9 0,85 
1,08 / B 19,6 24,7 0,79 
1,08 / C 25,3 24,2 1,05 
0,57 / A 28,6 29,1 0,98 
0,57 / B 31,3 29,9 1,05 
0,57 / C 37,2 29,3 1,27 

 

  
Figure 7: Buckling mode 1 of concrete panels in Abaqus in first iteration (stress ratio 1.08 left) / (stress 

ratio 0.57 right) 
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4 Verification against results from literature  

4.1 Example 1 
In addition to the experiment from chapter 3 in this example the verification of the RDA 

iterative method for stability of concrete panels under axial compression is shown. The 
experimental results from Lechner T. and Fischer O. (2015) [14] are used. They researched the 
load bearing behavior and stability of slender wall panels made of normal strength plain 
concrete and fibre-reinforced ultra-high performance concrete UHPC under axial compression. 
They considered different eccentricity values as well as the panel thickness. For this example, 
only concrete panels with dimensions 𝑏 × ℎ × 𝑡 = 1200 ×mm	400 ×mm	60	mm with an 
eccentricity of 10 mm are considered. Material parameters were measured on cubes 100 mm 
and cylinders 150 mm x 300 mm. Since for the calculation of the structural material constant KE 
the measured values of modulus of elasticity and Poisson’s ratio are necessary, this was partially 
taken into account. For normal concrete mixture (with the name C50/60) and for mixture of 
UHPC (with the name B5Q) modulus of elasticity 37000 MPa and 51000 MPa are used 
respectively. Poisson’s ratio 0,15 and density 2400 kg/m3 was used for both mixtures. The 
structural material constant KE for C50/60 and B5Q were calculated 0,05 and 0,04, respectively. 
The experimental set up and Abaqus model used for this example are shown in the Figure 8.  
Analogous to calculation in Section 3.4. the same calculation method was used. For every 
mixture are used two concrete panels. The test results of buckling forces for two concrete 
panels with mixtures C50/60 and B5Q are (510,0 kN, 483,0 kN) and (836,0 kN, 941,0 kN), 
respectively. The RDT calculation results for C50/60 and B5Q are 694,4 kN and 933,6 kN, 
respectively.  
 
 

   
Figure 8: Abaqus model (left) and experimental set up from Lechner T. and Fischer O. (2015) [14] (right) 

4.2 Example 2 
For further verification of the RDA iterative method in this example analytical expressions from 
literature on two-way action concrete panel were used. [15] tested 24 rectangular, reinforced 
concrete panels. The analytical expression as well as the results can be found in [4]. This 
expression is given by (10), 
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 𝑓:; = 0.425 ∙ 𝑓:
, ∙ 𝐵 ∙ [−𝐵 + (4 + 𝐵/)>.3]; 						𝐵 =

@%∙(.0*A)
%∙(B/D)%

E∙F1∙(,1G)
 (10) 

where 𝐿 = 𝑎/𝑏, if 𝑎/𝑏 < 1 and L=1 if 𝑎/𝑏 > 1. a, b, and h are panel length, width and thickness, 
respectively. Average ultimate strain of concrete after 28 days was assumed for this example 
𝜀>=0,0035 and the total reinforcement ratio 𝜌 for this example was zero. 
For the calculation of this example a concrete panel with length a = 4 m, width b = 2 m and 
thickness h = 0.05 m was used because [15] tested the concrete panels with aspect ratio a/b = 
2‚,0. slenderness b/t = 75 to 128,51 and concrete strength 𝑓:

, = 16,65 to 27 MPa. For the 
calculation concrete with strength of 𝑓:

, =25 MPa was used. The modulus of elasticity of 
28960,4 MPa was calculated with [6]. Poisson’s ratio 0,20 and density 2400 kg/m3 was used for 
the calculation on this example. The structural material constant KE = 0.04 was calculated. The 
calculation results of buckling stress according to (10) and RDT calculation are 17,1 MPa and 
17,7 MPa, respectively. 

5 Conclusions  

In this paper was presented and experimentally verified the RDA iterative modulus method for 
the calculation of biaxial buckling stress of concrete panels. The experimental results from 
Chapter 3 showed a very well matching with RDT calculation for both compression stress ratios. 
The measured values of modulus of elasticity, Poisson’s ratio, and density have a significant 
influence on the structural material constant KE as well as buckling stress results according to 
RDT. The first iteration of buckling stress was calculated using a model in Abaqus where the end 
conditions as well as the finite element mesh have influence on results. For further iterations 
(without Abaqus), a linear function between buckling stress and modulus of elasticity was used 
in this paper and has enabled faster calculations. In the Section 4.1 the RDA iterative modulus 
method used for calculation of buckling stress of concrete panels under axial compression is 
discussed. It was shown that this method can be used on normal strength plain concrete and 
fibre-reinforced ultra-high performance concrete UHPC. In the Section 4.2 the RDT calculation 
was compared with the analytical expression from literature on two-way action concrete panel. 
This results also show a very good matching. 
As presented in this paper the RDA iterative modulus method in combination with finite 
element method can be used for the calculations of axial and biaxial buckling stress for different 
concrete mixtures, where it is necessary to have the material parameters values. 
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